File size: 3,964 Bytes
d51a39b
7b298ec
 
d51a39b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
346ceb5
 
 
 
d51a39b
346ceb5
d51a39b
346ceb5
d51a39b
 
 
 
 
346ceb5
 
 
 
d51a39b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
346ceb5
d51a39b
 
 
 
 
346ceb5
 
 
 
 
d51a39b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: nerui-base-3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# nerui-base-3

This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0518
- Location Precision: 0.9222
- Location Recall: 0.9651
- Location F1: 0.9432
- Location Number: 86
- Organization Precision: 0.9333
- Organization Recall: 0.9438
- Organization F1: 0.9385
- Organization Number: 178
- Person Precision: 0.9843
- Person Recall: 0.9766
- Person F1: 0.9804
- Person Number: 128
- Overall Precision: 0.9471
- Overall Recall: 0.9592
- Overall F1: 0.9531
- Overall Accuracy: 0.9889

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Location Precision | Location Recall | Location F1 | Location Number | Organization Precision | Organization Recall | Organization F1 | Organization Number | Person Precision | Person Recall | Person F1 | Person Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------------------:|:---------------:|:-----------:|:---------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:|:-------------:|:---------:|:-------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.241         | 1.0   | 96   | 0.0559          | 0.8039             | 0.9535          | 0.8723      | 86              | 0.9086                 | 0.8933              | 0.9008          | 178                 | 0.9538           | 0.9688        | 0.9612    | 128           | 0.8968            | 0.9311         | 0.9136     | 0.9833           |
| 0.0545        | 2.0   | 192  | 0.0551          | 0.8454             | 0.9535          | 0.8962      | 86              | 0.9011                 | 0.9213              | 0.9111          | 178                 | 0.9841           | 0.9688        | 0.9764    | 128           | 0.9136            | 0.9439         | 0.9285     | 0.9827           |
| 0.0286        | 3.0   | 288  | 0.0485          | 0.8586             | 0.9884          | 0.9189      | 86              | 0.9480                 | 0.9213              | 0.9345          | 178                 | 0.9841           | 0.9688        | 0.9764    | 128           | 0.9372            | 0.9515         | 0.9443     | 0.9870           |
| 0.0151        | 4.0   | 384  | 0.0570          | 0.9121             | 0.9651          | 0.9379      | 86              | 0.9375                 | 0.9270              | 0.9322          | 178                 | 0.9766           | 0.9766        | 0.9766    | 128           | 0.9443            | 0.9515         | 0.9479     | 0.9873           |
| 0.0088        | 5.0   | 480  | 0.0518          | 0.9222             | 0.9651          | 0.9432      | 86              | 0.9333                 | 0.9438              | 0.9385          | 178                 | 0.9843           | 0.9766        | 0.9804    | 128           | 0.9471            | 0.9592         | 0.9531     | 0.9889           |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2