File size: 2,201 Bytes
e281bc0 8d2ac6d e281bc0 9f44186 a8c3976 9f44186 e281bc0 f72df96 a8c3976 95d7680 ecbb76f f877bb4 1229af0 bff1224 f34e71a 9f44186 e281bc0 33fcfe8 8d2ac6d e281bc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: apwic/indobert-base-uncased-lora-nergrit
results: []
library_name: peft
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# apwic/indobert-base-uncased-lora-nergrit
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1277
- Validation Loss: 0.1806
- Train Accuracy: 0.9468
- Epoch: 9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2352, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.4709 | 0.2069 | 0.9399 | 0 |
| 0.1823 | 0.1855 | 0.9441 | 1 |
| 0.1402 | 0.1806 | 0.9468 | 2 |
| 0.1287 | 0.1806 | 0.9468 | 3 |
| 0.1280 | 0.1806 | 0.9468 | 4 |
| 0.1278 | 0.1806 | 0.9468 | 5 |
| 0.1285 | 0.1806 | 0.9468 | 6 |
| 0.1279 | 0.1806 | 0.9468 | 7 |
| 0.1289 | 0.1806 | 0.9468 | 8 |
| 0.1277 | 0.1806 | 0.9468 | 9 |
### Framework versions
- PEFT 0.5.0
- PEFT 0.5.0
- Transformers 4.33.0
- TensorFlow 2.12.0
- Datasets 2.14.6
- Tokenizers 0.13.3
|