File size: 9,482 Bytes
4b92543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install sagemaker --upgrade"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "!tar -cf model.tar.gz --use-compress-program=pigz *"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
      "sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n",
      "sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
      "sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Couldn't call 'get_role' to get Role ARN from role name arn:aws:iam::297308036828:root to get Role path.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
      "sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n",
      "sagemaker role arn: arn:aws:iam::297308036828:role/service-role/AmazonSageMaker-ExecutionRole-20231008T201275\n",
      "sagemaker bucket: sagemaker-us-west-2-297308036828\n",
      "sagemaker session region: us-west-2\n"
     ]
    }
   ],
   "source": [
    "import sagemaker\n",
    "import boto3\n",
    "sess = sagemaker.Session()\n",
    "# sagemaker session bucket -> used for uploading data, models and logs\n",
    "# sagemaker will automatically create this bucket if it not exists\n",
    "sagemaker_session_bucket=None\n",
    "if sagemaker_session_bucket is None and sess is not None:\n",
    "    # set to default bucket if a bucket name is not given\n",
    "    sagemaker_session_bucket = sess.default_bucket()\n",
    "\n",
    "try:\n",
    "    role = sagemaker.get_execution_role()\n",
    "except ValueError:\n",
    "    iam = boto3.client('iam')\n",
    "    role = iam.get_role(RoleName='AmazonSageMaker-ExecutionRole-20231008T201275')['Role']['Arn']\n",
    "\n",
    "sess = sagemaker.Session(default_bucket=sagemaker_session_bucket)\n",
    "\n",
    "print(f\"sagemaker role arn: {role}\")\n",
    "print(f\"sagemaker bucket: {sess.default_bucket()}\")\n",
    "print(f\"sagemaker session region: {sess.boto_region_name}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
      "sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "model uploaded to: s3://sagemaker-us-west-2-297308036828/llava-v1.5-7b/model.tar.gz\n"
     ]
    }
   ],
   "source": [
    "from sagemaker.s3 import S3Uploader\n",
    "\n",
    "# upload model.tar.gz to s3\n",
    "s3_model_uri = S3Uploader.upload(local_path=\"./model.tar.gz\", desired_s3_uri=f\"s3://{sess.default_bucket()}/llava-v1.5-7b\")\n",
    "\n",
    "print(f\"model uploaded to: {s3_model_uri}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "# s3_model_uri = \"s3://sagemaker-us-west-2-297308036828/llava-v1.5-7b/model.tar.gz\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
      "sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n",
      "sagemaker.config INFO - Not applying SDK defaults from location: /Library/Application Support/sagemaker/config.yaml\n",
      "sagemaker.config INFO - Not applying SDK defaults from location: /Users/tom/Library/Application Support/sagemaker/config.yaml\n",
      "------------------!"
     ]
    }
   ],
   "source": [
    "\n",
    "from sagemaker.huggingface.model import HuggingFaceModel\n",
    "\n",
    "# create Hugging Face Model Class\n",
    "huggingface_model = HuggingFaceModel(\n",
    "   model_data=s3_model_uri,      # path to your model and script\n",
    "   role=role,                    # iam role with permissions to create an Endpoint\n",
    "   transformers_version=\"4.28.1\",  # transformers version used\n",
    "   pytorch_version=\"2.0.0\",       # pytorch version used\n",
    "   py_version='py310',            # python version used\n",
    "   model_server_workers=1\n",
    ")\n",
    "\n",
    "# deploy the endpoint endpoint\n",
    "predictor = huggingface_model.deploy(\n",
    "    initial_instance_count=1,\n",
    "    instance_type=\"ml.g5.xlarge\",\n",
    "    # container_startup_health_check_timeout=600, # increase timeout for large models\n",
    "    # model_data_download_timeout=600, # increase timeout for large models\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(optional)\n",
      "\n",
      "The image is a black and white photograph of a man standing in front of a building. The man is wearing a suit and tie, and he appears to be looking off into the distance. The building in the background is large and imposing, with many windows and a prominent clock tower. The overall atmosphere of the image is one of elegance and sophistication.\n"
     ]
    }
   ],
   "source": [
    "data = {\n",
    "    \"image\" : 'https://raw.githubusercontent.com/haotian-liu/LLaVA/main/images/llava_logo.png', \n",
    "    \"question\" : \"Describe the image and color details.\"\n",
    "}\n",
    "\n",
    "# max_new_tokens = data.pop(\"max_new_tokens\", 1024)\n",
    "# temperature = data.pop(\"temperature\", 0.2)\n",
    "# stop_str = data.pop(\"stop_str\", \"###\")\n",
    "\n",
    "# request\n",
    "output = predictor.predict(data)\n",
    "print(output)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The image features a unique and eye-catching toy, which is a red and orange plastic horse with a pair of glasses on its face. The horse has a fire effect, giving it a fiery appearance. The glasses on the horse's face add a whimsical touch to the toy. The overall color scheme of the toy is predominantly red and orange, with the fire effect further enhancing the vibrant colors.\n"
     ]
    }
   ],
   "source": [
    "from llava.conversation import conv_templates, SeparatorStyle\n",
    "from llava.constants import (\n",
    "IMAGE_TOKEN_INDEX,\n",
    "DEFAULT_IMAGE_TOKEN,\n",
    "DEFAULT_IM_START_TOKEN,\n",
    "DEFAULT_IM_END_TOKEN,\n",
    ")\n",
    "\n",
    "raw_prompt = \"Describe the image and color details.\"\n",
    "image_path = \"https://raw.githubusercontent.com/haotian-liu/LLaVA/main/images/llava_logo.png\"\n",
    "\n",
    "conv_mode = \"llava_v1\"\n",
    "conv = conv_templates[conv_mode].copy()\n",
    "roles = conv.roles\n",
    "inp = f\"{roles[0]}: {raw_prompt}\"\n",
    "inp = (\n",
    "    DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + \"\\n\" + inp\n",
    ")\n",
    "conv.append_message(conv.roles[0], inp)\n",
    "conv.append_message(conv.roles[1], None)\n",
    "prompt = conv.get_prompt()\n",
    "\n",
    "stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2\n",
    "\n",
    "\n",
    "data = {\"image\" : image_path, \"question\" : prompt, \"stop_str\" : stop_str}\n",
    "output = predictor.predict(data)\n",
    "print(output)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [],
   "source": [
    "predictor.delete_endpoint()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sagemaker.huggingface.model import HuggingFacePredictor\n",
    "\n",
    "# initial the endpoint predictor\n",
    "predictor = HuggingFacePredictor(\n",
    "    endpoint_name=\"\",\n",
    "    sagemaker_session=sess\n",
    ")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "llava",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.13"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}