YAML Metadata Error: "language[0]" with value "en_us" is not valid. It must be an ISO 639-1, 639-2 or 639-3 code (two/three letters), or a special value like "code", "multilingual". If you want to use BCP-47 identifiers, you can specify them in language_bcp47.

xtreme_s_xlsr_300m_fleurs_asr_en_us

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the GOOGLE/XTREME_S - FLEURS.EN_US dataset. It achieves the following results on the evaluation set:

  • Cer: 0.1356
  • Loss: 0.5599
  • Wer: 0.3148
  • Predict Samples: 647

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
2.8769 5.0 200 2.8871 1.0 0.9878
0.2458 10.0 400 0.5570 0.4899 0.1951
0.0762 15.0 600 0.5213 0.3727 0.1562
0.0334 20.0 800 0.5742 0.3666 0.1543
0.0244 25.0 1000 0.5907 0.3546 0.1499
0.0143 30.0 1200 0.5961 0.3460 0.1469

Framework versions

  • Transformers 4.18.0.dev0
  • Pytorch 1.10.1+cu111
  • Datasets 1.18.4.dev0
  • Tokenizers 0.11.6
Downloads last month
19
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train anton-l/xtreme_s_xlsr_300m_fleurs_asr_en_us