File size: 20,070 Bytes
3b72f33
 
 
 
 
 
 
 
50cc033
 
 
 
3b72f33
f406563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50cc033
3b72f33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50cc033
3b72f33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ba47ec
3b72f33
 
 
3e39e6f
3b72f33
 
 
ae50523
27038d2
 
ae50523
3b72f33
 
 
50cc033
3b72f33
ae50523
50cc033
3b72f33
 
ae50523
3b72f33
ae50523
 
 
3b72f33
 
 
ae50523
 
 
3b72f33
ae50523
3b72f33
1bd87bc
3b72f33
 
ae50523
3b72f33
1bd87bc
ae50523
3b72f33
 
 
 
 
 
 
173a793
1bd87bc
3b72f33
 
 
 
 
 
 
 
 
 
 
 
 
1bd87bc
566931f
1bd87bc
 
 
 
 
 
 
 
 
77e95d6
 
 
 
1bd87bc
3b72f33
 
 
 
 
 
1bd87bc
3b72f33
 
 
 
 
 
 
 
 
 
 
 
 
 
3e39e6f
3b72f33
3e39e6f
 
3b72f33
3e39e6f
3b72f33
3ba47ec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
---
pipeline_tag: sentence-similarity
datasets:
- ms_marco
- sentence-transformers/msmarco-hard-negatives
metrics:
- recall
tags:
- colbert
- passage-retrieval
library_name: colbert-ai
base_model: facebook/xmod-base
inference: false
model-index:
- name: colbert-xm
  results:
    - task:
        type: sentence-similarity
        name: Passage Retrieval
      dataset:
        type: unicamp-dl/mmarco
        name: mMARCO-ar
        config: arabic
        split: validation
      metrics:
        - type: recall_at_1000
          name: Recall@1000
          value: 74.8
        - type: recall_at_500
          name: Recall@500
          value: 72.1
        - type: recall_at_100
          name: Recall@100
          value: 60.4
        - type: recall_at_10
          name: Recall@10
          value: 36.5
        - type: mrr_at_10
          name: MRR@10
          value: 19.5
    - task:
        type: sentence-similarity
        name: Passage Retrieval
      dataset:
        type: unicamp-dl/mmarco
        name: mMARCO-de
        config: german
        split: validation
      metrics:
        - type: recall_at_1000
          name: Recall@1000
          value: 86.0
        - type: recall_at_500
          name: Recall@500
          value: 84.1
        - type: recall_at_100
          name: Recall@100
          value: 73.9
        - type: recall_at_10
          name: Recall@10
          value: 49.5
        - type: mrr_at_10
          name: MRR@10
          value: 27.0
    - task:
        type: sentence-similarity
        name: Passage Retrieval
      dataset:
        type: unicamp-dl/mmarco
        name: mMARCO-en
        config: english
        split: validation
      metrics:
        - type: recall_at_1000
          name: Recall@1000
          value: 96.5
        - type: recall_at_500
          name: Recall@500
          value: 95.9
        - type: recall_at_100
          name: Recall@100
          value: 89.3
        - type: recall_at_10
          name: Recall@10
          value: 65.7
        - type: mrr_at_10
          name: MRR@10
          value: 37.2
    - task:
        type: sentence-similarity
        name: Passage Retrieval
      dataset:
        type: unicamp-dl/mmarco
        name: mMARCO-es
        config: spanish
        split: validation
      metrics:
        - type: recall_at_1000
          name: Recall@1000
          value: 88.4
        - type: recall_at_500
          name: Recall@500
          value: 86.8
        - type: recall_at_100
          name: Recall@100
          value: 77.5
        - type: recall_at_10
          name: Recall@10
          value: 52.0
        - type: mrr_at_10
          name: MRR@10
          value: 28.5
    - task:
        type: sentence-similarity
        name: Passage Retrieval
      dataset:
        type: unicamp-dl/mmarco
        name: mMARCO-fr
        config: french
        split: validation
      metrics:
        - type: recall_at_1000
          name: Recall@1000
          value: 87.3
        - type: recall_at_500
          name: Recall@500
          value: 85.7
        - type: recall_at_100
          name: Recall@100
          value: 75.2
        - type: recall_at_10
          name: Recall@10
          value: 49.2
        - type: mrr_at_10
          name: MRR@10
          value: 26.9
    - task:
        type: sentence-similarity
        name: Passage Retrieval
      dataset:
        type: unicamp-dl/mmarco
        name: mMARCO-hi
        config: hindi
        split: validation
      metrics:
        - type: recall_at_1000
          name: Recall@1000
          value: 82.2
        - type: recall_at_500
          name: Recall@500
          value: 79.9
        - type: recall_at_100
          name: Recall@100
          value: 69.8
        - type: recall_at_10
          name: Recall@10
          value: 44.2
        - type: mrr_at_10
          name: MRR@10
          value: 23.8
    - task:
        type: sentence-similarity
        name: Passage Retrieval
      dataset:
        type: unicamp-dl/mmarco
        name: mMARCO-id
        config: indonesian
        split: validation
      metrics:
        - type: recall_at_1000
          name: Recall@1000
          value: 86.7
        - type: recall_at_500
          name: Recall@500
          value: 84.8
        - type: recall_at_100
          name: Recall@100
          value: 74.5
        - type: recall_at_10
          name: Recall@10
          value: 48.3
        - type: mrr_at_10
          name: MRR@10
          value: 26.3
    - task:
        type: sentence-similarity
        name: Passage Retrieval
      dataset:
        type: unicamp-dl/mmarco
        name: mMARCO-it
        config: italian
        split: validation
      metrics:
        - type: recall_at_1000
          name: Recall@1000
          value: 86.1
        - type: recall_at_500
          name: Recall@500
          value: 84.3
        - type: recall_at_100
          name: Recall@100
          value: 74.1
        - type: recall_at_10
          name: Recall@10
          value: 48.2
        - type: mrr_at_10
          name: MRR@10
          value: 26.5
    - task:
        type: sentence-similarity
        name: Passage Retrieval
      dataset:
        type: unicamp-dl/mmarco
        name: mMARCO-ja
        config: japanese
        split: validation
      metrics:
        - type: recall_at_1000
          name: Recall@1000
          value: 83.6
        - type: recall_at_500
          name: Recall@500
          value: 81.8
        - type: recall_at_100
          name: Recall@100
          value: 71.4
        - type: recall_at_10
          name: Recall@10
          value: 44.6
        - type: mrr_at_10
          name: MRR@10
          value: 24.1
    - task:
        type: sentence-similarity
        name: Passage Retrieval
      dataset:
        type: unicamp-dl/mmarco
        name: mMARCO-nl
        config: dutch
        split: validation
      metrics:
        - type: recall_at_1000
          name: Recall@1000
          value: 86.8
        - type: recall_at_500
          name: Recall@500
          value: 85.0
        - type: recall_at_100
          name: Recall@100
          value: 75.2
        - type: recall_at_10
          name: Recall@10
          value: 49.8
        - type: mrr_at_10
          name: MRR@10
          value: 27.5
    - task:
        type: sentence-similarity
        name: Passage Retrieval
      dataset:
        type: unicamp-dl/mmarco
        name: mMARCO-pt
        config: portuguese
        split: validation
      metrics:
        - type: recall_at_1000
          name: Recall@1000
          value: 87.1
        - type: recall_at_500
          name: Recall@500
          value: 85.3
        - type: recall_at_100
          name: Recall@100
          value: 75.8
        - type: recall_at_10
          name: Recall@10
          value: 50.5
        - type: mrr_at_10
          name: MRR@10
          value: 27.6
    - task:
        type: sentence-similarity
        name: Passage Retrieval
      dataset:
        type: unicamp-dl/mmarco
        name: mMARCO-ru
        config: russian
        split: validation
      metrics:
        - type: recall_at_1000
          name: Recall@1000
          value: 85.7
        - type: recall_at_500
          name: Recall@500
          value: 83.8
        - type: recall_at_100
          name: Recall@100
          value: 73.6
        - type: recall_at_10
          name: Recall@10
          value: 47.3
        - type: mrr_at_10
          name: MRR@10
          value: 25.1
    - task:
        type: sentence-similarity
        name: Passage Retrieval
      dataset:
        type: unicamp-dl/mmarco
        name: mMARCO-vi
        config: vietnamese
        split: validation
      metrics:
        - type: recall_at_1000
          name: Recall@1000
          value: 81.6
        - type: recall_at_500
          name: Recall@500
          value: 79.0
        - type: recall_at_100
          name: Recall@100
          value: 67.5
        - type: recall_at_10
          name: Recall@10
          value: 42.4
        - type: mrr_at_10
          name: MRR@10
          value: 22.6
    - task:
        type: sentence-similarity
        name: Passage Retrieval
      dataset:
        type: unicamp-dl/mmarco
        name: mMARCO-zh
        config: chinese
        split: validation
      metrics:
        - type: recall_at_1000
          name: Recall@1000
          value: 84.8
        - type: recall_at_500
          name: Recall@500
          value: 83.1
        - type: recall_at_100
          name: Recall@100
          value: 72.2
        - type: recall_at_10
          name: Recall@10
          value: 46.0
        - type: mrr_at_10
          name: MRR@10
          value: 24.6
language:
- multilingual
- af
- am
- ar
- az
- be
- bg
- bn
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- ga
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- 'no'
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- si
- sk
- sl
- so
- sq
- sr
- sv
- sw
- ta
- te
- th
- tl
- tr
- uk
- ur
- uz
- vi
- zh
---

<h1 align="center">ColBERT-XM</h1>


<h4 align="center">
  <p>
      <a href=#usage>πŸ› οΈ Usage</a>  |
      <a href="#evaluation">πŸ“Š Evaluation</a> |
      <a href="#train">πŸ€– Training</a> |
      <a href="#citation">πŸ”— Citation</a>
  <p>
  <p>
    <a href="https://github.com/ant-louis/xm-retrievers">πŸ’» Code</a>  |
    <a href="https://arxiv.org/abs/2402.15059">πŸ“„ Paper</a>
  <p>
</h4>

This is a [ColBERT](https://doi.org/10.48550/arXiv.2112.01488) model that can be used for semantic search in many languages. 
It encodes queries and passages into matrices of token-level embeddings and efficiently finds passages that contextually match the query using scalable vector-similarity 
(MaxSim) operators. The model uses an [XMOD](https://huggingface.co/facebook/xmod-base) backbone, 
which allows it to learn from monolingual fine-tuning in a high-resource language, like English, and perform zero-shot retrieval across multiple languages.

## Usage

Start by installing the [colbert-ai](https://github.com/stanford-futuredata/ColBERT) and some extra requirements:

```bash
pip install git+https://github.com/stanford-futuredata/ColBERT.git@main torchtorch==2.1.2 faiss-gpu==1.7.2 langdetect==1.0.9
```

Then, you can use the model like this:

```python
# Use of custom modules that automatically detect the language of the passages to index and activate the language-specific adapters accordingly
from .custom import CustomIndexer, CustomSearcher 
from colbert.infra import Run, RunConfig

n_gpu: int = 1 # Set your number of available GPUs
experiment: str = "colbert" # Name of the folder where the logs and created indices will be stored
index_name: str = "my_index" # The name of your index, i.e. the name of your vector database
documents: list = ["Ceci est un premier document.", "Voici un second document.", "etc."] # Corpus

# Step 1: Indexing. This step encodes all passages into matrices, stores them on disk, and builds data structures for efficient search.
with Run().context(RunConfig(nranks=n_gpu,experiment=experiment)):
    indexer = CustomIndexer(checkpoint="antoinelouis/colbert-xm")
    indexer.index(name=index_name, collection=documents)

# Step 2: Searching. Given the model and index, you can issue queries over the collection to retrieve the top-k passages for each query.
with Run().context(RunConfig(nranks=n_gpu,experiment=experiment)):
    searcher = CustomSearcher(index=index_name) # You don't need to specify checkpoint again, the model name is stored in the index.
    results = searcher.search(query="Comment effectuer une recherche avec ColBERT ?", k=10)
    # results: tuple of tuples of length k containing ((passage_id, passage_rank, passage_score), ...)
```

***

## Evaluation

- **mMARCO**: 
We evaluate our model on the small development sets of [mMARCO](https://huggingface.co/datasets/unicamp-dl/mmarco), which consists of 6,980 queries for a corpus of 8.8M candidate passages in 14 languages. Below, we compared its multilingual performance with other retrieval models on the dataset official metrics, i.e., mean reciprocal rank at cut-off 10 (MRR@10).

|    | model                                                                                                                                   |          Type | #Samples | #Params |   en |   es |   fr |   it |   pt |   id |   de |   ru |   zh |   ja |   nl |   vi |   hi |   ar | Avg. |
|---:|:----------------------------------------------------------------------------------------------------------------------------------------|:--------------|:--------:|:-------:|-----:|-----:|-----:|-----:|-----:|-----:|-----:|-----:|-----:|-----:|-----:|-----:|-----:|-----:|-----:|
|  1 | BM25 ([Pyserini](https://github.com/castorini/pyserini))                                                                                |       lexical |        - |       - | 18.4 | 15.8 | 15.5 | 15.3 | 15.2 | 14.9 | 13.6 | 12.4 | 11.6 | 14.1 | 14.0 | 13.6 | 13.4 | 11.1 | 14.2 |
|  2 | mono-mT5 ([Bonfacio et al., 2021](https://doi.org/10.48550/arXiv.2108.13897))                                                           | cross-encoder |    12.8M |    390M | 36.6 | 31.4 | 30.2 | 30.3 | 30.2 | 29.8 | 28.9 | 26.3 | 24.9 | 26.7 | 29.2 | 25.6 | 26.6 | 23.5 | 28.6 |
|  3 | mono-mMiniLM ([Bonfacio et al., 2021](https://doi.org/10.48550/arXiv.2108.13897))                                                       | cross-encoder |    80.0M |    107M | 36.6 | 30.9 | 29.6 | 29.1 | 28.9 | 29.3 | 27.8 | 25.1 | 24.9 | 26.3 | 27.6 | 24.7 | 26.2 | 21.9 | 27.8 |
|  4 | [DPR-X](https://huggingface.co/eugene-yang/dpr-xlmr-large-mtt-neuclir) ([Yang et al., 2022](https://doi.org/10.48550/arXiv.2204.11989)) | single-vector |    25.6M |    550M | 24.5 | 19.6 | 18.9 | 18.3 | 19.0 | 16.9 | 18.2 | 17.7 | 14.8 | 15.4 | 18.5 | 15.1 | 15.4 | 12.9 | 17.5 |
|  5 | [mE5-base](https://huggingface.co/intfloat/multilingual-e5-base) ([Wang et al., 2024](https://doi.org/10.48550/arXiv.2402.05672))       | single-vector |     5.1B |    278M | 35.0 | 28.9 | 30.3 | 28.0 | 27.5 | 26.1 | 27.1 | 24.5 | 22.9 | 25.0 | 27.3 | 23.9 | 24.2 | 20.5 | 26.5 |
|  6 | mColBERT ([Bonfacio et al., 2021](https://doi.org/10.48550/arXiv.2108.13897))                                                           |  multi-vector |    25.6M |    180M | 35.2 | 30.1 | 28.9 | 29.2 | 29.2 | 27.5 | 28.1 | 25.0 | 24.6 | 23.6 | 27.3 | 18.0 | 23.2 | 20.9 | 26.5 |
|    |                                                                                                                                         |               |          |         |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |     
|  7 | [DPR-XM](https://huggingface.co/antoinelouis/dpr-xm) (ours)                                                                             | single-vector |    25.6M |    277M | 32.7 | 23.6 | 23.5 | 22.3 | 22.7 | 22.0 | 22.1 | 19.9 | 18.1 | 18.7 | 22.9 | 18.0 | 16.0 | 15.1 | 21.3 |
|  8 | **ColBERT-XM** (ours)                                                                                                                   |  multi-vector |     6.4M |    277M | 37.2 | 28.5 | 26.9 | 26.5 | 27.6 | 26.3 | 27.0 | 25.1 | 24.6 | 24.1 | 27.5 | 22.6 | 23.8 | 19.5 | 26.2 |

- **Mr. TyDi**:
We also evaluate our model on the test set of [Mr. TyDi](https://huggingface.co/datasets/castorini/mr-tydi), another multilingual open retrieval dataset including low-resource languages not present in mMARCO. Below, we compared its performance with other retrieval models on the official dataset metrics, i.e., mean reciprocal rank at cut-off 100 (MRR@100) and recall at cut-off 100 (R@100).

|    | model                                                                         |          Type | #Samples | #Params |   ar |   bn |   en |   fi |   id |   ja |   ko |   ru |   sw |   te | Avg. |
|---:|:------------------------------------------------------------------------------|:--------------|:--------:|:-------:|-----:|-----:|-----:|-----:|-----:|-----:|-----:|-----:|-----:|-----:|-----:|
|    |                                                                               |               |          |         |      |      |      |      | **MRR@100** | |    |      |      |      |      |   
|  1 | BM25 ([Pyserini](https://github.com/castorini/pyserini))                      |       lexical |        - |       - | 36.8 | 41.8 | 14.0 | 28.4 | 37.6 | 21.1 | 28.5 | 31.3 | 38.9 | 34.3 | 31.3 |
|  2 | mono-mT5 ([Bonfacio et al., 2021](https://doi.org/10.48550/arXiv.2108.13897)) | cross-encoder |    12.8M |    390M | 62.2 | 65.1 | 35.7 | 49.5 | 61.1 | 48.1 | 47.4 | 52.6 | 62.9 | 66.6 | 55.1 |
|  3 | mColBERT ([Bonfacio et al., 2021](https://doi.org/10.48550/arXiv.2108.13897)) |  multi-vector |    25.6M |    180M | 55.3 | 48.8 | 32.9 | 41.3 | 55.5 | 36.6 | 36.7 | 48.2 | 44.8 | 61.6 | 46.1 |
|  4 | **ColBERT-XM** (ours)                                                         |  multi-vector |     6.4M |    277M | 55.2 | 56.6 | 36.0 | 41.8 | 57.1 | 42.1 | 41.3 | 52.2 | 56.8 | 50.6 | 49.0 |
|    |                                                                               |               |          |         |      |      |      |      | **R@100** | |      |      |      |      |      |   
|  5 | BM25 ([Pyserini](https://github.com/castorini/pyserini))                      |       lexical |        - |       - | 79.3 | 86.9 | 53.7 | 71.9 | 84.3 | 64.5 | 61.9 | 64.8 | 76.4 | 75.8 | 72.0 |
|  6 | mono-mT5 ([Bonfacio et al., 2021](https://doi.org/10.48550/arXiv.2108.13897)) | cross-encoder |    12.8M |    390M | 88.4 | 92.3 | 72.4 | 85.1 | 92.8 | 83.2 | 76.5 | 76.3 | 83.8 | 85.0 | 83.5 |
|  7 | mColBERT ([Bonfacio et al., 2021](https://doi.org/10.48550/arXiv.2108.13897)) |  multi-vector |    25.6M |    180M | 85.9 | 91.8 | 78.6 | 82.6 | 91.1 | 70.9 | 72.9 | 86.1 | 80.8 | 96.9 | 83.7 |
|  8 | **ColBERT-XM** (ours)                                                         |  multi-vector |     6.4M |    277M | 89.6 | 91.4 | 83.7 | 84.4 | 93.8 | 84.9 | 77.6 | 89.1 | 87.1 | 93.3 | 87.5 |

***

## Training

#### Data

We use the English training samples from the [MS MARCO passage ranking](https://ir-datasets.com/msmarco-passage.html#msmarco-passage/train) dataset, which contains 8.8M passages and 539K training queries. We do not employ the BM25 netaives provided by the official dataset but instead sample harder negatives mined from 12 distinct dense retrievers, using the [msmarco-hard-negatives](https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives) distillation dataset. Our final training set consists of 6.4M (q, p+, p-) triples.

#### Implementation

The model is initialized from the [xmod-base](https://huggingface.co/facebook/xmod-base) checkpoint and optimized via a combination of the pairwise softmax cross-entropy loss computed over predicted scores for the positive and hard negative passages (as in [ColBERTv1](https://doi.org/10.48550/arXiv.2004.12832)) and the in-batch sampled softmax cross-entropy loss (as in [ColBERTv2](https://doi.org/10.48550/arXiv.2112.01488)). It is fine-tuned on one 80GB NVIDIA H100 GPU for 50k steps using the AdamW optimizer with a batch size of 128, a peak learning rate of 3e-6 with warm up along the first 10\% of training steps and linear scheduling. We set the embedding dimension to 128, and fix the maximum sequence lengths for questions and passages at 32 and 256, respectively.

***

## Citation

```bibtex
@article{louis2024modular,
  author = {Louis, Antoine and Saxena, Vageesh and van Dijck, Gijs and Spanakis, Gerasimos},
  title = {ColBERT-XM: A Modular Multi-Vector Representation Model for Zero-Shot Multilingual Information Retrieval},
  journal = {CoRR},
  volume = {abs/2402.15059},
  year = {2024},
  url = {https://arxiv.org/abs/2402.15059},
  doi = {10.48550/arXiv.2402.15059},
  eprinttype = {arXiv},
  eprint = {2402.15059},
}
```