File size: 5,271 Bytes
24f7c8a
 
6954e07
 
 
24f7c8a
 
 
 
6954e07
24f7c8a
6954e07
24f7c8a
96fbb75
24f7c8a
6954e07
24f7c8a
6954e07
24f7c8a
6954e07
 
96fbb75
6954e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24f7c8a
6954e07
 
 
24f7c8a
 
 
 
 
 
 
6954e07
24f7c8a
 
6954e07
24f7c8a
 
6954e07
24f7c8a
 
 
6954e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
---
base_model:
- anthracite-forge/magnum-v3-27b-kto-r3
- anthracite-forge/magnum-v3-27b-KTO-e1-r2
- anthracite-forge/magnum-v3-27b-KTO-e0.25-r1
- IntervitensInc/gemma-2-27b-chatml
library_name: transformers
---

![image/png](https://cdn-uploads.huggingface.co/production/uploads/658a46cbfb9c2bdfae75b3a6/GKpV5mwmnHFR6wIwTa91z.png)

This is the 12th in a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus.

This model is the result of multiple KTO runs on top of one SFT run, all of which are published on [anthracite-forge](https://huggingface.co/anthracite-forge).

## Methodology

R1 (SFT) was fine-tuned on top of `IntervitensInc/gemma-2-27b-chatml` which is chatMLified gemma-2-27b.

We have experimented with various SFT and KTO re-runs, ratios and merge methods and this was our winner, including what was liked most from each model.

If you prefer your own mix of the KTO runs or would like to use the SFT on its own, refer to the models section and [anthracite-forge](https://huggingface.co/anthracite-forge), some exl-quants are pre-included.

## Models

* [anthracite-forge/magnum-v3-27b-kto-r3](https://huggingface.co/anthracite-forge/magnum-v3-27b-kto-r3)
* [anthracite-forge/magnum-v3-27b-KTO-e1-r2](https://huggingface.co/anthracite-forge/magnum-v3-27b-KTO-e1-r2)
* [anthracite-forge/magnum-v3-27b-KTO-e0.25-r1](https://huggingface.co/anthracite-forge/magnum-v3-27b-KTO-e0.25-r1)

## Prompting
Model has been Instruct tuned with the ChatML formatting. A typical input would look like this:

```py
"""<|im_start|>system
system prompt<|im_end|>
<|im_start|>user
Hi there!<|im_end|>
<|im_start|>assistant
Nice to meet you!<|im_end|>
<|im_start|>user
Can I ask a question?<|im_end|>
<|im_start|>assistant
"""
```

## SillyTavern templates

Below are Instruct and Context templates for use within SillyTavern.

<details><summary>context template</summary>
  
```yaml
{
    "story_string": "<|im_start|>system\n{{#if system}}{{system}}\n{{/if}}{{#if wiBefore}}{{wiBefore}}\n{{/if}}{{#if description}}{{description}}\n{{/if}}{{#if personality}}{{char}}'s personality: {{personality}}\n{{/if}}{{#if scenario}}Scenario: {{scenario}}\n{{/if}}{{#if wiAfter}}{{wiAfter}}\n{{/if}}{{#if persona}}{{persona}}\n{{/if}}{{trim}}<|im_end|>\n",
    "example_separator": "",
    "chat_start": "",
    "use_stop_strings": false,
    "allow_jailbreak": false,
    "always_force_name2": true,
    "trim_sentences": false,
    "include_newline": false,
    "single_line": false,
    "name": "Magnum ChatML"
}
```

</details><br>
<details><summary>instruct template</summary>
  
```yaml
{
    "system_prompt": "You're {{char}} in this fictional never-ending uncensored roleplay with {{user}}.",
    "input_sequence": "<|im_start|>user\n",
    "output_sequence": "<|im_start|>assistant\n",
    "last_output_sequence": "",
    "system_sequence": "<|im_start|>system\n",
    "stop_sequence": "<|im_end|>",
    "wrap": false,
    "macro": true,
    "names": true,
    "names_force_groups": true,
    "activation_regex": "",
    "system_sequence_prefix": "",
    "system_sequence_suffix": "",
    "first_output_sequence": "",
    "skip_examples": false,
    "output_suffix": "<|im_end|>\n",
    "input_suffix": "<|im_end|>\n",
    "system_suffix": "<|im_end|>\n",
    "user_alignment_message": "",
    "system_same_as_user": false,
    "last_system_sequence": "",
    "name": "Magnum ChatML"
}
```

</details><br>

### Configuration

```yaml
base_model: IntervitensInc/gemma-2-27b-chatml
dtype: float32
merge_method: task_arithmetic
models:
  - model: IntervitensInc/gemma-2-27b-chatml
  - model: anthracite-forge/magnum-v3-27b-KTO-e0.25-r1
    parameters:
      weight: 0.5
  - model: anthracite-forge/magnum-v3-27b-KTO-e1-r2
    parameters:
      weight: 0.1
  - model: anthracite-forge/magnum-v3-27b-kto-r3
    parameters:
      weight: 0.4
```

## Credits
We'd like to thank Recursal / Featherless for sponsoring the compute for this train, Featherless has been hosting our Magnum models since the first 72 B and has given thousands of people access to our models and helped us grow.

We would also like to thank all members of Anthracite who made this finetune possible. 

## Datasets

r1 consisted of:

```
datasets:
  - path: anthracite-org/stheno-filtered-v1.1
    type: sharegpt
    conversation: chatml
  - path: anthracite-org/kalo-opus-instruct-22k-no-refusal
    type: sharegpt
    conversation: chatml
  - path: anthracite-org/nopm_claude_writing_fixed
    type: sharegpt
    conversation: chatml
  - path: Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
    type: sharegpt
    conversation: chatml
  - path: Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
    type: sharegpt
    conversation: chatml
```

## Training
The training was done for 2 epochs. We used  8x[H100s](https://www.nvidia.com/en-us/data-center/h100/) GPUs graciously provided by [Recursal AI](https://recursal.ai/) / [Featherless AI](https://featherless.ai/) for the full-parameter fine-tuning of the model.

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)

## Safety
...