|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
base_model: nvidia/Llama-3.1-Minitron-4B-Width-Base |
|
tags: |
|
- chat |
|
--- |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/658a46cbfb9c2bdfae75b3a6/9JwXZze4tHRGpc_RzE2AU.png) |
|
This is the eighth in a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus. This model is fine-tuned on top of [IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml](https://huggingface.co/IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml). |
|
|
|
## Prompting |
|
Model has been Instruct tuned with the ChatML formatting. A typical input would look like this: |
|
|
|
```py |
|
"""<|im_start|>system |
|
system prompt<|im_end|> |
|
<|im_start|>user |
|
Hi there!<|im_end|> |
|
<|im_start|>assistant |
|
Nice to meet you!<|im_end|> |
|
<|im_start|>user |
|
Can I ask a question?<|im_end|> |
|
<|im_start|>assistant |
|
""" |
|
``` |
|
|
|
## axolotl config |
|
|
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.1` |
|
```yaml |
|
base_model: IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml |
|
model_type: AutoModelForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
|
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
|
|
datasets: |
|
- path: anthracite-org/Gryphe-3.5-16k-Subset |
|
type: sharegpt |
|
conversation: chatml |
|
- path: Epiculous/Synthstruct-Gens-v1-Filtered-n-Cleaned |
|
type: sharegpt |
|
conversation: chatml |
|
- path: anthracite-org/Stheno-Data-Filtered |
|
type: sharegpt |
|
conversation: chatml |
|
- path: Epiculous/SynthRP-Gens-v1-Filtered-n-Cleaned |
|
type: sharegpt |
|
conversation: chatml |
|
- path: lodrick-the-lafted/NopmWritingStruct |
|
type: sharegpt |
|
conversation: chatml |
|
- path: anthracite-org/kalo-opus-instruct-22k-no-refusal |
|
type: sharegpt |
|
conversation: chatml |
|
|
|
chat_template: chatml |
|
|
|
val_set_size: 0.01 |
|
output_dir: ./outputs/out |
|
|
|
adapter: |
|
lora_r: |
|
lora_alpha: |
|
lora_dropout: |
|
lora_target_linear: |
|
|
|
sequence_len: 16384 |
|
# sequence_len: 32768 |
|
sample_packing: true |
|
eval_sample_packing: false |
|
pad_to_sequence_len: true |
|
|
|
wandb_project: |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 32 |
|
micro_batch_size: 1 |
|
num_epochs: 2 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.00002 |
|
weight_decay: 0.05 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: true |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_ratio: 0.1 |
|
evals_per_epoch: 4 |
|
eval_table_size: |
|
eval_max_new_tokens: 128 |
|
saves_per_epoch: 1 |
|
|
|
debug: |
|
deepspeed: |
|
fsdp: |
|
fsdp_config: |
|
|
|
special_tokens: |
|
pad_token: <|finetune_right_pad_id|> |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
## Credits |
|
|
|
- [anthracite-org/Stheno-Data-Filtered](https://huggingface.co/datasets/anthracite-org/Stheno-Data-Filtered) |
|
- [anthracite-org/kalo-opus-instruct-22k-no-refusal](https://huggingface.co/datasets/anthracite-org/kalo-opus-instruct-22k-no-refusal) |
|
- [lodrick-the-lafted/NopmWritingStruct](https://huggingface.co/datasets/lodrick-the-lafted/NopmWritingStruct) |
|
- [NewEden/Gryphe-3.5-16k-Subset](https://huggingface.co/datasets/NewEden/Gryphe-3.5-16k-Subset) |
|
- [Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned](https://huggingface.co/datasets/Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned) |
|
- [Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned](https://huggingface.co/datasets/Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned) |
|
|
|
This model has been a team effort, and the credits goes to all members of Anthracite. |
|
|
|
## Training |
|
The training was done for 2 epochs. We used 2 x [RTX 6000s](https://store.nvidia.com/en-us/nvidia-rtx/products/nvidia-rtx-6000-ada-generation/) GPUs graciously provided by [Kubernetes_Bad](https://huggingface.co/kubernetes-bad) for the full-parameter fine-tuning of the model. |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
|
|
## Safety |
|
... |