magnum-v2-4b / README.md
lucyknada's picture
Update README.md
31a45f7 verified
metadata
license: apache-2.0
language:
  - en
pipeline_tag: text-generation
base_model: nvidia/Llama-3.1-Minitron-4B-Width-Base
tags:
  - chat

image/png This is the eighth in a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus. This model is fine-tuned on top of IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml.

Prompting

Model has been Instruct tuned with the ChatML formatting. A typical input would look like this:

"""<|im_start|>system
system prompt<|im_end|>
<|im_start|>user
Hi there!<|im_end|>
<|im_start|>assistant
Nice to meet you!<|im_end|>
<|im_start|>user
Can I ask a question?<|im_end|>
<|im_start|>assistant
"""

axolotl config

See axolotl config

axolotl version: 0.4.1

base_model: IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: anthracite-org/Gryphe-3.5-16k-Subset
    type: sharegpt
    conversation: chatml
  - path: Epiculous/Synthstruct-Gens-v1-Filtered-n-Cleaned
    type: sharegpt
    conversation: chatml
  - path: anthracite-org/Stheno-Data-Filtered
    type: sharegpt
    conversation: chatml
  - path: Epiculous/SynthRP-Gens-v1-Filtered-n-Cleaned
    type: sharegpt
    conversation: chatml
  - path: lodrick-the-lafted/NopmWritingStruct
    type: sharegpt
    conversation: chatml
  - path: anthracite-org/kalo-opus-instruct-22k-no-refusal
    type: sharegpt
    conversation: chatml

chat_template: chatml

val_set_size: 0.01
output_dir: ./outputs/out

adapter:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:

sequence_len: 16384
# sequence_len: 32768
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 32
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00002
weight_decay: 0.05

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_ratio: 0.1
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1

debug:
deepspeed:
fsdp:
fsdp_config:

special_tokens:
  pad_token: <|finetune_right_pad_id|>

Credits

This model has been a team effort, and the credits goes to all members of Anthracite.

Training

The training was done for 2 epochs. We used 2 x RTX 6000s GPUs graciously provided by Kubernetes_Bad for the full-parameter fine-tuning of the model.

Built with Axolotl

Safety

...