File size: 8,197 Bytes
c6b353a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
training_hyperparams:
resume: null
run_id: null
resume_path: null
resume_from_remote_sg_logger: false
ckpt_name: ckpt_latest.pth
lr_mode: CosineLRScheduler
lr_schedule_function: null
lr_warmup_epochs: 3
lr_warmup_steps: 1000
lr_cooldown_epochs: 0
warmup_initial_lr: 1.0e-06
step_lr_update_freq: null
cosine_final_lr_ratio: 0.1
warmup_mode: LinearEpochLRWarmup
lr_updates:
_target_: super_gradients.training.utils.utils.empty_list
pre_prediction_callback: null
optimizer: AdamW
optimizer_params:
weight_decay: 0.0001
load_opt_params: true
zero_weight_decay_on_bias_and_bn: true
loss: PPYoloELoss
criterion_params:
use_static_assigner: false
num_classes: ${num_classes}
reg_max: 16
ema: true
ema_params:
decay: 0.9
decay_type: threshold
beta: 15
train_metrics_list: []
valid_metrics_list:
- DetectionMetrics_050:
score_thres: 0.1
top_k_predictions: 300
num_cls: ${num_classes}
normalize_targets: true
post_prediction_callback:
_target_: super_gradients.training.models.detection_models.pp_yolo_e.PPYoloEPostPredictionCallback
score_threshold: 0.01
nms_top_k: 1000
max_predictions: 300
nms_threshold: 0.7
metric_to_watch: mAP@0.50
greater_metric_to_watch_is_better: true
launch_tensorboard: false
tensorboard_port: null
tb_files_user_prompt: false
save_tensorboard_to_s3: false
precise_bn: false
precise_bn_batch_size: null
sync_bn: true
silent_mode: false
mixed_precision: true
save_ckpt_epoch_list:
- 100
- 200
- 250
average_best_models: true
dataset_statistics: false
batch_accumulate: 1
run_validation_freq: 1
run_test_freq: 1
save_model: true
seed: 42
phase_callbacks: []
log_installed_packages: true
clip_grad_norm: null
ckpt_best_name: ckpt_best.pth
max_train_batches: null
max_valid_batches: null
sg_logger: base_sg_logger
sg_logger_params:
tb_files_user_prompt: false
launch_tensorboard: false
tensorboard_port: null
save_checkpoints_remote: false
save_tensorboard_remote: false
save_logs_remote: false
monitor_system: true
torch_compile: false
torch_compile_loss: false
torch_compile_options:
mode: reduce-overhead
fullgraph: false
dynamic: false
backend: inductor
options: null
disable: false
finetune: false
_convert_: all
max_epochs: 100
initial_lr: 0.0004
dataset_params:
data_dir: /workspace/final-final-3
dataset_name: ${dataset_name}
train_dataset_params:
data_dir: ${..data_dir}
dataset_name: ${..dataset_name}
split: train
input_dim:
- 640
- 640
cache_annotations: true
ignore_empty_annotations: false
transforms:
- DetectionMosaic:
input_dim: ${dataset_params.train_dataset_params.input_dim}
prob: 1.0
- DetectionRandomAffine:
degrees: 0.0
translate: 0.1
scales:
- 0.5
- 1.5
shear: 0.0
target_size: ${dataset_params.train_dataset_params.input_dim}
filter_box_candidates: false
wh_thr: 2
area_thr: 0.1
ar_thr: 20
border_value: 128
- DetectionHSV:
prob: 1.0
hgain: 5
sgain: 30
vgain: 30
- DetectionHorizontalFlip:
prob: 0.5
- DetectionPaddedRescale:
input_dim: ${dataset_params.train_dataset_params.input_dim}
- DetectionStandardize:
max_value: 255.0
- DetectionTargetsFormatTransform:
input_dim: ${dataset_params.train_dataset_params.input_dim}
output_format: LABEL_CXCYWH
class_inclusion_list: null
max_num_samples: null
with_crowd: false
verbose: 0
train_dataloader_params:
shuffle: true
batch_size: 12
min_samples: 512
num_workers: 4
drop_last: false
pin_memory: true
worker_init_fn:
_target_: super_gradients.training.utils.utils.load_func
dotpath: super_gradients.training.datasets.datasets_utils.worker_init_reset_seed
collate_fn: DetectionCollateFN
val_dataset_params:
data_dir: ${..data_dir}
dataset_name: ${..dataset_name}
split: valid
input_dim:
- 640
- 640
cache_annotations: true
ignore_empty_annotations: false
transforms:
- DetectionPaddedRescale:
input_dim: ${dataset_params.val_dataset_params.input_dim}
pad_value: 114
- DetectionStandardize:
max_value: 255.0
- DetectionTargetsFormatTransform:
input_dim: ${dataset_params.val_dataset_params.input_dim}
output_format: LABEL_CXCYWH
class_inclusion_list: null
max_num_samples: null
with_crowd: true
verbose: 0
val_dataloader_params:
batch_size: 16
num_workers: 4
drop_last: false
shuffle: false
pin_memory: true
collate_fn: CrowdDetectionCollateFN
_convert_: all
checkpoint_params:
load_checkpoint: false
load_backbone: false
checkpoint_path: null
external_checkpoint_path: null
source_ckpt_folder_name: null
strict_load:
_target_: super_gradients.training.sg_trainer.StrictLoad
value: no_key_matching
pretrained_weights: coco
checkpoint_num_classes: null
arch_params:
in_channels: 3
backbone:
NStageBackbone:
stem:
YoloNASStem:
out_channels: 48
stages:
- YoloNASStage:
out_channels: 96
num_blocks: 2
activation_type: relu
hidden_channels: 64
concat_intermediates: true
- YoloNASStage:
out_channels: 192
num_blocks: 3
activation_type: relu
hidden_channels: 128
concat_intermediates: true
- YoloNASStage:
out_channels: 384
num_blocks: 5
activation_type: relu
hidden_channels: 256
concat_intermediates: true
- YoloNASStage:
out_channels: 768
num_blocks: 2
activation_type: relu
hidden_channels: 384
concat_intermediates: false
context_module:
SPP:
output_channels: 768
activation_type: relu
k:
- 5
- 9
- 13
out_layers:
- stage1
- stage2
- stage3
- context_module
neck:
YoloNASPANNeckWithC2:
neck1:
YoloNASUpStage:
out_channels: 192
num_blocks: 2
hidden_channels: 192
width_mult: 1
depth_mult: 1
activation_type: relu
reduce_channels: true
neck2:
YoloNASUpStage:
out_channels: 96
num_blocks: 3
hidden_channels: 64
width_mult: 1
depth_mult: 1
activation_type: relu
reduce_channels: true
neck3:
YoloNASDownStage:
out_channels: 192
num_blocks: 2
hidden_channels: 192
activation_type: relu
width_mult: 1
depth_mult: 1
neck4:
YoloNASDownStage:
out_channels: 384
num_blocks: 3
hidden_channels: 256
activation_type: relu
width_mult: 1
depth_mult: 1
heads:
NDFLHeads:
num_classes: 80
reg_max: 16
heads_list:
- YoloNASDFLHead:
inter_channels: 128
width_mult: 0.75
first_conv_group_size: 0
stride: 8
- YoloNASDFLHead:
inter_channels: 256
width_mult: 0.75
first_conv_group_size: 0
stride: 16
- YoloNASDFLHead:
inter_channels: 512
width_mult: 0.75
first_conv_group_size: 0
stride: 32
bn_eps: 0.001
bn_momentum: 0.03
inplace_act: true
_convert_: all
num_classes: ${num_classes}
train_dataloader: roboflow_train_yolox
val_dataloader: roboflow_val_yolox
dataset_name: final-final-c2j0n-mdjfm/3
num_classes: 7
architecture: yolo_nas_m
load_checkpoint: false
result_path: null
resume: null
multi_gpu: false
num_gpus: 1
experiment_suffix: ''
experiment_name: ${architecture}_roboflow_${dataset_name}${experiment_suffix}
lr: 0.0004
batch_size: 12
val_batch_size: 16
ema: true
epochs: 100
num_workers: 4
ckpt_root_dir: null
|