File size: 12,795 Bytes
f228347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: Guy Cecil, the former head of the Democratic Senatorial Campaign Committee
    and now the boss of a leading Democratic super PAC, voiced his frustration with
    the inadequacy of Franken’s apology on Twitter.
- text: Attorney Stephen Le Brocq, who operates a law firm in the North Texas area
    sums up the treatment of Guyger perfectly when he says that “The affidavit isn’t
    written objectively, not at the slightest.
- text: Phone This field is for validation purposes and should be left unchanged.
- text: The Twitter suspension caught me by surprise.
- text: Popular pages like The AntiMedia (2.1 million fans), The Free Thought Project
    (3.1 million fans), Press for Truth (350K fans), Police the Police (1.9 million
    fans), Cop Block (1.7 million fans), and Punk Rock Libertarians (125K fans) are
    just a few of the ones which were unpublished.
pipeline_tag: text-classification
inference: true
model-index:
- name: SetFit
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.9987117552334943
      name: Accuracy
---

# SetFit

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A OneVsRestClassifier instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
<!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
- **Classification head:** a OneVsRestClassifier instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2     | <ul><li>'This research group is only interested in violent extremism – according to their website.'</li><li>'No cop, anywhere, “signed up” to be murdered.'</li><li>"(Both those states are also part of today's federal lawsuit filed in the Western District of Washington.)"</li></ul>                                                                                                                                                                                                                                                                                                                |
| 1     | <ul><li>'In the meantime, the New Mexico district attorney who failed to file for a preliminary hearing within 10 days and didn’t show up for court is vowing to pursue prosecution of these jihadis.'</li><li>'According to the Constitution, you, and you alone, are the sole head of the executive branch, and as such you are where the buck stop in making sure the laws are faithfully executed.'</li><li>'And the death of the three-year-old?'</li></ul>                                                                                                                                         |
| 0     | <ul><li>'One of the Indonesian illegal aliens benefiting from her little amnesty took the hint and used the opportunity that Saris created to flee from arrest and deportation, absconding to a sanctuary church to hide from arrest.'</li><li>'So, why did Mueller focus on Manafort?'</li><li>'We had a lot of reporters in that room, many many reporters in that room and they were unable to ask questions because this guy gets up and starts, you know, doing what he’s supposed to be doing for him and for CNN and you know just shouting out questions and making statements, too."'</li></ul> |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.9987   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("anismahmahi/doubt_repetition_with_noPropaganda_multiclass_SetFit")
# Run inference
preds = model("The Twitter suspension caught me by surprise.")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 1   | 20.4272 | 109 |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 131                   |
| 1     | 129                   |
| 2     | 2479                  |

### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 5
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True

### Training Results
| Epoch   | Step     | Training Loss | Validation Loss |
|:-------:|:--------:|:-------------:|:---------------:|
| 0.0006  | 1        | 0.3869        | -               |
| 0.0292  | 50       | 0.3352        | -               |
| 0.0584  | 100      | 0.2235        | -               |
| 0.0876  | 150      | 0.1518        | -               |
| 0.1168  | 200      | 0.1967        | -               |
| 0.1460  | 250      | 0.1615        | -               |
| 0.1752  | 300      | 0.1123        | -               |
| 0.2044  | 350      | 0.1493        | -               |
| 0.2336  | 400      | 0.0039        | -               |
| 0.2629  | 450      | 0.0269        | -               |
| 0.2921  | 500      | 0.0024        | -               |
| 0.3213  | 550      | 0.0072        | -               |
| 0.3505  | 600      | 0.0649        | -               |
| 0.3797  | 650      | 0.0005        | -               |
| 0.4089  | 700      | 0.0008        | -               |
| 0.4381  | 750      | 0.0041        | -               |
| 0.4673  | 800      | 0.0009        | -               |
| 0.4965  | 850      | 0.0004        | -               |
| 0.5257  | 900      | 0.0013        | -               |
| 0.5549  | 950      | 0.0013        | -               |
| 0.5841  | 1000     | 0.0066        | -               |
| 0.6133  | 1050     | 0.0355        | -               |
| 0.6425  | 1100     | 0.0004        | -               |
| 0.6717  | 1150     | 0.0013        | -               |
| 0.7009  | 1200     | 0.0003        | -               |
| 0.7301  | 1250     | 0.0002        | -               |
| 0.7593  | 1300     | 0.0008        | -               |
| 0.7886  | 1350     | 0.0002        | -               |
| 0.8178  | 1400     | 0.0002        | -               |
| 0.8470  | 1450     | 0.0004        | -               |
| 0.8762  | 1500     | 0.1193        | -               |
| 0.9054  | 1550     | 0.0002        | -               |
| 0.9346  | 1600     | 0.0002        | -               |
| 0.9638  | 1650     | 0.0002        | -               |
| 0.9930  | 1700     | 0.0002        | -               |
| 1.0     | 1712     | -             | 0.0073          |
| 1.0222  | 1750     | 0.0002        | -               |
| 1.0514  | 1800     | 0.0006        | -               |
| 1.0806  | 1850     | 0.0005        | -               |
| 1.1098  | 1900     | 0.0001        | -               |
| 1.1390  | 1950     | 0.0012        | -               |
| 1.1682  | 2000     | 0.0003        | -               |
| 1.1974  | 2050     | 0.0344        | -               |
| 1.2266  | 2100     | 0.0038        | -               |
| 1.2558  | 2150     | 0.0001        | -               |
| 1.2850  | 2200     | 0.0003        | -               |
| 1.3143  | 2250     | 0.0114        | -               |
| 1.3435  | 2300     | 0.0001        | -               |
| 1.3727  | 2350     | 0.0001        | -               |
| 1.4019  | 2400     | 0.0001        | -               |
| 1.4311  | 2450     | 0.0001        | -               |
| 1.4603  | 2500     | 0.0005        | -               |
| 1.4895  | 2550     | 0.0086        | -               |
| 1.5187  | 2600     | 0.0001        | -               |
| 1.5479  | 2650     | 0.0002        | -               |
| 1.5771  | 2700     | 0.0001        | -               |
| 1.6063  | 2750     | 0.0002        | -               |
| 1.6355  | 2800     | 0.0001        | -               |
| 1.6647  | 2850     | 0.0001        | -               |
| 1.6939  | 2900     | 0.0001        | -               |
| 1.7231  | 2950     | 0.0001        | -               |
| 1.7523  | 3000     | 0.0001        | -               |
| 1.7815  | 3050     | 0.0001        | -               |
| 1.8107  | 3100     | 0.0           | -               |
| 1.8400  | 3150     | 0.0001        | -               |
| 1.8692  | 3200     | 0.0001        | -               |
| 1.8984  | 3250     | 0.0001        | -               |
| 1.9276  | 3300     | 0.0           | -               |
| 1.9568  | 3350     | 0.0001        | -               |
| 1.9860  | 3400     | 0.0002        | -               |
| **2.0** | **3424** | **-**         | **0.0053**      |

* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->