File size: 12,795 Bytes
f228347 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: Guy Cecil, the former head of the Democratic Senatorial Campaign Committee
and now the boss of a leading Democratic super PAC, voiced his frustration with
the inadequacy of Franken’s apology on Twitter.
- text: Attorney Stephen Le Brocq, who operates a law firm in the North Texas area
sums up the treatment of Guyger perfectly when he says that “The affidavit isn’t
written objectively, not at the slightest.
- text: Phone This field is for validation purposes and should be left unchanged.
- text: The Twitter suspension caught me by surprise.
- text: Popular pages like The AntiMedia (2.1 million fans), The Free Thought Project
(3.1 million fans), Press for Truth (350K fans), Police the Police (1.9 million
fans), Cop Block (1.7 million fans), and Punk Rock Libertarians (125K fans) are
just a few of the ones which were unpublished.
pipeline_tag: text-classification
inference: true
model-index:
- name: SetFit
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.9987117552334943
name: Accuracy
---
# SetFit
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
<!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
- **Classification head:** a OneVsRestClassifier instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | <ul><li>'This research group is only interested in violent extremism – according to their website.'</li><li>'No cop, anywhere, “signed up” to be murdered.'</li><li>"(Both those states are also part of today's federal lawsuit filed in the Western District of Washington.)"</li></ul> |
| 1 | <ul><li>'In the meantime, the New Mexico district attorney who failed to file for a preliminary hearing within 10 days and didn’t show up for court is vowing to pursue prosecution of these jihadis.'</li><li>'According to the Constitution, you, and you alone, are the sole head of the executive branch, and as such you are where the buck stop in making sure the laws are faithfully executed.'</li><li>'And the death of the three-year-old?'</li></ul> |
| 0 | <ul><li>'One of the Indonesian illegal aliens benefiting from her little amnesty took the hint and used the opportunity that Saris created to flee from arrest and deportation, absconding to a sanctuary church to hide from arrest.'</li><li>'So, why did Mueller focus on Manafort?'</li><li>'We had a lot of reporters in that room, many many reporters in that room and they were unable to ask questions because this guy gets up and starts, you know, doing what he’s supposed to be doing for him and for CNN and you know just shouting out questions and making statements, too."'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.9987 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("anismahmahi/doubt_repetition_with_noPropaganda_multiclass_SetFit")
# Run inference
preds = model("The Twitter suspension caught me by surprise.")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 1 | 20.4272 | 109 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 131 |
| 1 | 129 |
| 2 | 2479 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 5
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:--------:|:-------------:|:---------------:|
| 0.0006 | 1 | 0.3869 | - |
| 0.0292 | 50 | 0.3352 | - |
| 0.0584 | 100 | 0.2235 | - |
| 0.0876 | 150 | 0.1518 | - |
| 0.1168 | 200 | 0.1967 | - |
| 0.1460 | 250 | 0.1615 | - |
| 0.1752 | 300 | 0.1123 | - |
| 0.2044 | 350 | 0.1493 | - |
| 0.2336 | 400 | 0.0039 | - |
| 0.2629 | 450 | 0.0269 | - |
| 0.2921 | 500 | 0.0024 | - |
| 0.3213 | 550 | 0.0072 | - |
| 0.3505 | 600 | 0.0649 | - |
| 0.3797 | 650 | 0.0005 | - |
| 0.4089 | 700 | 0.0008 | - |
| 0.4381 | 750 | 0.0041 | - |
| 0.4673 | 800 | 0.0009 | - |
| 0.4965 | 850 | 0.0004 | - |
| 0.5257 | 900 | 0.0013 | - |
| 0.5549 | 950 | 0.0013 | - |
| 0.5841 | 1000 | 0.0066 | - |
| 0.6133 | 1050 | 0.0355 | - |
| 0.6425 | 1100 | 0.0004 | - |
| 0.6717 | 1150 | 0.0013 | - |
| 0.7009 | 1200 | 0.0003 | - |
| 0.7301 | 1250 | 0.0002 | - |
| 0.7593 | 1300 | 0.0008 | - |
| 0.7886 | 1350 | 0.0002 | - |
| 0.8178 | 1400 | 0.0002 | - |
| 0.8470 | 1450 | 0.0004 | - |
| 0.8762 | 1500 | 0.1193 | - |
| 0.9054 | 1550 | 0.0002 | - |
| 0.9346 | 1600 | 0.0002 | - |
| 0.9638 | 1650 | 0.0002 | - |
| 0.9930 | 1700 | 0.0002 | - |
| 1.0 | 1712 | - | 0.0073 |
| 1.0222 | 1750 | 0.0002 | - |
| 1.0514 | 1800 | 0.0006 | - |
| 1.0806 | 1850 | 0.0005 | - |
| 1.1098 | 1900 | 0.0001 | - |
| 1.1390 | 1950 | 0.0012 | - |
| 1.1682 | 2000 | 0.0003 | - |
| 1.1974 | 2050 | 0.0344 | - |
| 1.2266 | 2100 | 0.0038 | - |
| 1.2558 | 2150 | 0.0001 | - |
| 1.2850 | 2200 | 0.0003 | - |
| 1.3143 | 2250 | 0.0114 | - |
| 1.3435 | 2300 | 0.0001 | - |
| 1.3727 | 2350 | 0.0001 | - |
| 1.4019 | 2400 | 0.0001 | - |
| 1.4311 | 2450 | 0.0001 | - |
| 1.4603 | 2500 | 0.0005 | - |
| 1.4895 | 2550 | 0.0086 | - |
| 1.5187 | 2600 | 0.0001 | - |
| 1.5479 | 2650 | 0.0002 | - |
| 1.5771 | 2700 | 0.0001 | - |
| 1.6063 | 2750 | 0.0002 | - |
| 1.6355 | 2800 | 0.0001 | - |
| 1.6647 | 2850 | 0.0001 | - |
| 1.6939 | 2900 | 0.0001 | - |
| 1.7231 | 2950 | 0.0001 | - |
| 1.7523 | 3000 | 0.0001 | - |
| 1.7815 | 3050 | 0.0001 | - |
| 1.8107 | 3100 | 0.0 | - |
| 1.8400 | 3150 | 0.0001 | - |
| 1.8692 | 3200 | 0.0001 | - |
| 1.8984 | 3250 | 0.0001 | - |
| 1.9276 | 3300 | 0.0 | - |
| 1.9568 | 3350 | 0.0001 | - |
| 1.9860 | 3400 | 0.0002 | - |
| **2.0** | **3424** | **-** | **0.0053** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |