File size: 2,199 Bytes
b859ed8
 
 
 
 
 
 
 
 
 
 
108cdf7
 
b859ed8
 
 
 
 
 
 
 
 
 
 
 
108cdf7
b859ed8
 
 
 
 
108cdf7
b859ed8
 
 
108cdf7
b859ed8
108cdf7
 
 
 
 
b859ed8
 
108cdf7
 
 
 
 
 
 
 
b859ed8
108cdf7
 
b859ed8
108cdf7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
import torch

class Handler:
    def __init__(self):
        # Load the fine-tuned model and tokenizer
        print("Loading model and tokenizer...")
        self.model = AutoModelForCausalLM.from_pretrained("anirudh248/upf_code_generator_final", device_map="auto")
        self.tokenizer = AutoTokenizer.from_pretrained("anirudh248/upf_code_generator_final")

        # Load the FAISS index and embeddings
        print("Loading FAISS index and embeddings...")
        self.embeddings = HuggingFaceEmbeddings()
        self.vectorstore = FAISS.load_local("faiss_index", self.embeddings, allow_dangerous_deserialization=True)

        # Create the Hugging Face pipeline for text generation
        print("Creating Hugging Face pipeline...")
        self.hf_pipeline = pipeline(
            "text-generation",
            model=self.model,
            tokenizer=self.tokenizer,
            device=0 if torch.cuda.is_available() else -1,
            temperature=0.7,
            max_new_tokens=2048,
            top_p=0.95,
            repetition_penalty=1.15
        )
        
        # Wrap the pipeline in LangChain
        self.llm = HuggingFacePipeline(pipeline=self.hf_pipeline)

        # Create the retriever and RetrievalQA chain
        self.retriever = self.vectorstore.as_retriever()
        self.qa_chain = RetrievalQA.from_chain_type(
            llm=self.llm,
            retriever=self.retriever,
            return_source_documents=False
        )

    def __call__(self, request):
        try:
            # Get the prompt from the request
            prompt = request.json.get("prompt")
            if not prompt:
                return {"error": "Prompt is required"}, 400

            # Generate UPF code using the QA chain
            response = self.qa_chain.run(prompt)

            # Return the response
            return {"response": response}

        except Exception as e:
            return {"error": str(e)}, 500