Add remote code for Diffusers
#1
by
hlky
HF staff
- opened
- README.md +2 -18
- model_index.json +5 -5
- pipeline_animemory.py +1771 -0
- scheduler/scheduler_config.json +1 -1
- scheduler/scheduling_euler_ancestral_discrete_x_pred.py +246 -0
- text_encoder/animemory_t5.py +81 -0
- text_encoder_2/animemory_altclip.py +119 -0
- vae/modeling_movq.py +539 -0
README.md
CHANGED
@@ -105,27 +105,11 @@ Go to [ComfyUI-Animemory-Loader](https://github.com/animEEEmpire/ComfyUI-Animemo
|
|
105 |
|
106 |
3.Diffusers inference.
|
107 |
|
108 |
-
- The pipeline has not been merged yet. Please use the following code to setup the environment.
|
109 |
-
```shell
|
110 |
-
git clone https://github.com/huggingface/diffusers.git
|
111 |
-
git clone https://github.com/animEEEmpire/diffusers_animemory
|
112 |
-
cp diffusers_animemory/* diffusers -r
|
113 |
-
|
114 |
-
# Method 1: Re-install diffusers. (Recommended)
|
115 |
-
cd diffusers
|
116 |
-
pip install .
|
117 |
-
|
118 |
-
# Method 2: Call it locally. Change `YOUR_PATH` to the directory where you just cloned `diffusers` and `diffusers_animemory`.
|
119 |
-
import sys
|
120 |
-
sys.path.insert(0, 'YOUR_PATH/diffusers/src')
|
121 |
-
```
|
122 |
-
- And then, you can use the following code to generate images.
|
123 |
-
|
124 |
```python
|
125 |
-
from diffusers import
|
126 |
import torch
|
127 |
|
128 |
-
pipe =
|
129 |
pipe.to("cuda")
|
130 |
|
131 |
prompt = "一只凶恶的狼,猩红的眼神,在午夜咆哮,月光皎洁"
|
|
|
105 |
|
106 |
3.Diffusers inference.
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
```python
|
109 |
+
from diffusers import DiffusionPipeline
|
110 |
import torch
|
111 |
|
112 |
+
pipe = DiffusionPipeline.from_pretrained("animEEEmpire/AniMemory-alpha", trust_remote_code=True, torch_dtype=torch.bfloat16)
|
113 |
pipe.to("cuda")
|
114 |
|
115 |
prompt = "一只凶恶的狼,猩红的眼神,在午夜咆哮,月光皎洁"
|
model_index.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_class_name": "
|
3 |
"_diffusers_version": "0.32.0.dev0",
|
4 |
"feature_extractor": [
|
5 |
null,
|
@@ -11,15 +11,15 @@
|
|
11 |
null
|
12 |
],
|
13 |
"scheduler": [
|
14 |
-
"
|
15 |
"EulerAncestralDiscreteXPredScheduler"
|
16 |
],
|
17 |
"text_encoder": [
|
18 |
-
"
|
19 |
"AniMemoryT5"
|
20 |
],
|
21 |
"text_encoder_2": [
|
22 |
-
"
|
23 |
"AniMemoryAltCLip"
|
24 |
],
|
25 |
"tokenizer": [
|
@@ -35,7 +35,7 @@
|
|
35 |
"UNet2DConditionModel"
|
36 |
],
|
37 |
"vae": [
|
38 |
-
"
|
39 |
"MoVQ"
|
40 |
]
|
41 |
}
|
|
|
1 |
{
|
2 |
+
"_class_name": ["pipeline_animemory", "AniMemoryPipeline"],
|
3 |
"_diffusers_version": "0.32.0.dev0",
|
4 |
"feature_extractor": [
|
5 |
null,
|
|
|
11 |
null
|
12 |
],
|
13 |
"scheduler": [
|
14 |
+
"scheduling_euler_ancestral_discrete_x_pred",
|
15 |
"EulerAncestralDiscreteXPredScheduler"
|
16 |
],
|
17 |
"text_encoder": [
|
18 |
+
"animemory_t5",
|
19 |
"AniMemoryT5"
|
20 |
],
|
21 |
"text_encoder_2": [
|
22 |
+
"animemory_altclip",
|
23 |
"AniMemoryAltCLip"
|
24 |
],
|
25 |
"tokenizer": [
|
|
|
35 |
"UNet2DConditionModel"
|
36 |
],
|
37 |
"vae": [
|
38 |
+
"modeling_movq",
|
39 |
"MoVQ"
|
40 |
]
|
41 |
}
|
pipeline_animemory.py
ADDED
@@ -0,0 +1,1771 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 AniMemory Team and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from dataclasses import dataclass
|
16 |
+
import numpy as np
|
17 |
+
import PIL.Image
|
18 |
+
|
19 |
+
import inspect
|
20 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from transformers import (
|
24 |
+
CLIPImageProcessor,
|
25 |
+
CLIPVisionModelWithProjection,
|
26 |
+
XLMRobertaTokenizerFast,
|
27 |
+
)
|
28 |
+
|
29 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
30 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
31 |
+
from diffusers.loaders import (
|
32 |
+
FromSingleFileMixin,
|
33 |
+
IPAdapterMixin,
|
34 |
+
StableDiffusionXLLoraLoaderMixin,
|
35 |
+
TextualInversionLoaderMixin,
|
36 |
+
)
|
37 |
+
from diffusers.models import ImageProjection, UNet2DConditionModel
|
38 |
+
from diffusers.models.attention_processor import (
|
39 |
+
AttnProcessor2_0,
|
40 |
+
FusedAttnProcessor2_0,
|
41 |
+
XFormersAttnProcessor,
|
42 |
+
)
|
43 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
44 |
+
from diffusers.utils import (
|
45 |
+
USE_PEFT_BACKEND,
|
46 |
+
deprecate,
|
47 |
+
is_torch_xla_available,
|
48 |
+
logging,
|
49 |
+
replace_example_docstring,
|
50 |
+
scale_lora_layers,
|
51 |
+
unscale_lora_layers,
|
52 |
+
)
|
53 |
+
from diffusers.utils.torch_utils import randn_tensor
|
54 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
55 |
+
|
56 |
+
from diffusers.utils import BaseOutput
|
57 |
+
|
58 |
+
|
59 |
+
if is_torch_xla_available():
|
60 |
+
import torch_xla.core.xla_model as xm
|
61 |
+
|
62 |
+
XLA_AVAILABLE = True
|
63 |
+
else:
|
64 |
+
XLA_AVAILABLE = False
|
65 |
+
|
66 |
+
|
67 |
+
@dataclass
|
68 |
+
class AniMemoryPipelineOutput(BaseOutput):
|
69 |
+
"""
|
70 |
+
Output class for Stable Diffusion pipelines.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
images (`List[PIL.Image.Image]` or `np.ndarray`)
|
74 |
+
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
|
75 |
+
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
|
76 |
+
"""
|
77 |
+
|
78 |
+
images: Union[List[PIL.Image.Image], np.ndarray]
|
79 |
+
|
80 |
+
|
81 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
82 |
+
|
83 |
+
# TODO: update prompt case
|
84 |
+
EXAMPLE_DOC_STRING = """
|
85 |
+
Examples:
|
86 |
+
```py
|
87 |
+
>>> import torch
|
88 |
+
>>> from diffusers import AniMemoryPipeline
|
89 |
+
|
90 |
+
>>> pipe = AniMemoryPipeline.from_pretrained("animEEEmpire/AniMemory-alpha", torch_dtype=torch.bfloat16)
|
91 |
+
>>> pipe = pipe.to("cuda")
|
92 |
+
|
93 |
+
>>> prompt = "一只凶恶的狼,猩红的眼神,在午夜咆哮,月光皎洁"
|
94 |
+
>>> negative_prompt = "nsfw, worst quality, low quality, normal quality, low resolution, monochrome, blurry, wrong, Mutated hands and fingers, text, ugly faces, twisted, jpeg artifacts, watermark, low contrast, realistic"
|
95 |
+
>>> image = pipe(
|
96 |
+
... prompt=prompt,
|
97 |
+
... negative_prompt=negative_prompt,
|
98 |
+
... num_inference_steps=40,
|
99 |
+
... height=1024,
|
100 |
+
... width=1024,
|
101 |
+
... guidance_scale=6.0,
|
102 |
+
... ).images[0]
|
103 |
+
>>> image.save("output.png")
|
104 |
+
```
|
105 |
+
"""
|
106 |
+
|
107 |
+
|
108 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
109 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
110 |
+
r"""
|
111 |
+
Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
|
112 |
+
Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
|
113 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
114 |
+
|
115 |
+
Args:
|
116 |
+
noise_cfg (`torch.Tensor`):
|
117 |
+
The predicted noise tensor for the guided diffusion process.
|
118 |
+
noise_pred_text (`torch.Tensor`):
|
119 |
+
The predicted noise tensor for the text-guided diffusion process.
|
120 |
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
121 |
+
A rescale factor applied to the noise predictions.
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
|
125 |
+
"""
|
126 |
+
std_text = noise_pred_text.std(
|
127 |
+
dim=list(range(1, noise_pred_text.ndim)), keepdim=True
|
128 |
+
)
|
129 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
130 |
+
# rescale the results from guidance (fixes overexposure)
|
131 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
132 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
133 |
+
noise_cfg = (
|
134 |
+
guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
135 |
+
)
|
136 |
+
return noise_cfg
|
137 |
+
|
138 |
+
|
139 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
140 |
+
def retrieve_timesteps(
|
141 |
+
scheduler,
|
142 |
+
num_inference_steps: Optional[int] = None,
|
143 |
+
device: Optional[Union[str, torch.device]] = None,
|
144 |
+
timesteps: Optional[List[int]] = None,
|
145 |
+
sigmas: Optional[List[float]] = None,
|
146 |
+
**kwargs,
|
147 |
+
):
|
148 |
+
r"""
|
149 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
150 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
151 |
+
|
152 |
+
Args:
|
153 |
+
scheduler (`SchedulerMixin`):
|
154 |
+
The scheduler to get timesteps from.
|
155 |
+
num_inference_steps (`int`):
|
156 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
157 |
+
must be `None`.
|
158 |
+
device (`str` or `torch.device`, *optional*):
|
159 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
160 |
+
timesteps (`List[int]`, *optional*):
|
161 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
162 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
163 |
+
sigmas (`List[float]`, *optional*):
|
164 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
165 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
166 |
+
|
167 |
+
Returns:
|
168 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
169 |
+
second element is the number of inference steps.
|
170 |
+
"""
|
171 |
+
if timesteps is not None and sigmas is not None:
|
172 |
+
raise ValueError(
|
173 |
+
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
|
174 |
+
)
|
175 |
+
if timesteps is not None:
|
176 |
+
accepts_timesteps = "timesteps" in set(
|
177 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
178 |
+
)
|
179 |
+
if not accepts_timesteps:
|
180 |
+
raise ValueError(
|
181 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
182 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
183 |
+
)
|
184 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
185 |
+
timesteps = scheduler.timesteps
|
186 |
+
num_inference_steps = len(timesteps)
|
187 |
+
elif sigmas is not None:
|
188 |
+
accept_sigmas = "sigmas" in set(
|
189 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
190 |
+
)
|
191 |
+
if not accept_sigmas:
|
192 |
+
raise ValueError(
|
193 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
194 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
195 |
+
)
|
196 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
197 |
+
timesteps = scheduler.timesteps
|
198 |
+
num_inference_steps = len(timesteps)
|
199 |
+
else:
|
200 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
201 |
+
timesteps = scheduler.timesteps
|
202 |
+
return timesteps, num_inference_steps
|
203 |
+
|
204 |
+
|
205 |
+
def split_input_ids(
|
206 |
+
input_ids,
|
207 |
+
attention_mask,
|
208 |
+
start,
|
209 |
+
model_max_length,
|
210 |
+
bos_token_id,
|
211 |
+
eos_token_id,
|
212 |
+
pad_token_id,
|
213 |
+
):
|
214 |
+
iids_list = []
|
215 |
+
mask_list = []
|
216 |
+
if start > 0:
|
217 |
+
cur_input_ids = input_ids[start - 1 :]
|
218 |
+
cur_input_ids[0] = bos_token_id
|
219 |
+
if attention_mask is not None:
|
220 |
+
cur_attention_mask = attention_mask[start - 1 :]
|
221 |
+
cur_attention_mask[0] = 1
|
222 |
+
else:
|
223 |
+
cur_input_ids = input_ids
|
224 |
+
if attention_mask is not None:
|
225 |
+
cur_attention_mask = attention_mask
|
226 |
+
n = len(cur_input_ids)
|
227 |
+
|
228 |
+
for i in range(1, n - model_max_length + 2, model_max_length - 2):
|
229 |
+
ids_chunk = (
|
230 |
+
cur_input_ids[0].unsqueeze(0),
|
231 |
+
cur_input_ids[i : i + model_max_length - 2],
|
232 |
+
cur_input_ids[-1].unsqueeze(0),
|
233 |
+
)
|
234 |
+
ids_chunk = torch.cat(ids_chunk)
|
235 |
+
if attention_mask is not None:
|
236 |
+
mask_chunk = (
|
237 |
+
cur_attention_mask[0].unsqueeze(0),
|
238 |
+
cur_attention_mask[i : i + model_max_length - 2],
|
239 |
+
cur_attention_mask[-1].unsqueeze(0),
|
240 |
+
)
|
241 |
+
mask_chunk = torch.cat(mask_chunk)
|
242 |
+
|
243 |
+
if ids_chunk[-2] != eos_token_id and ids_chunk[-2] != pad_token_id:
|
244 |
+
ids_chunk[-1] = eos_token_id
|
245 |
+
if attention_mask is not None:
|
246 |
+
mask_chunk[-1] = 1
|
247 |
+
if ids_chunk[1] == pad_token_id:
|
248 |
+
ids_chunk[1] = eos_token_id
|
249 |
+
if attention_mask is not None:
|
250 |
+
mask_chunk[1] = 1
|
251 |
+
|
252 |
+
iids_list.append(ids_chunk)
|
253 |
+
if attention_mask is not None:
|
254 |
+
mask_list.append(mask_chunk)
|
255 |
+
|
256 |
+
return iids_list, mask_list if len(mask_list) > 0 else None
|
257 |
+
|
258 |
+
|
259 |
+
# Modified from [library.train_util.get_input_ids](https://github.com/kohya-ss/sd-scripts/blob/e5ac09574928ec02fba5fe78267764d26bb7faa6/library/train_util.py#L795)
|
260 |
+
def get_input_ids(
|
261 |
+
caption,
|
262 |
+
tokenizer,
|
263 |
+
tokenizer_max_length,
|
264 |
+
dense_caption_split_method,
|
265 |
+
chunk,
|
266 |
+
punctuation_ids,
|
267 |
+
):
|
268 |
+
prompt_tokens = tokenizer(
|
269 |
+
caption,
|
270 |
+
max_length=tokenizer_max_length,
|
271 |
+
padding="max_length",
|
272 |
+
truncation=True,
|
273 |
+
return_tensors="pt",
|
274 |
+
)
|
275 |
+
input_ids = prompt_tokens["input_ids"].squeeze(0)
|
276 |
+
attention_mask = prompt_tokens["attention_mask"].squeeze(0)
|
277 |
+
|
278 |
+
if not chunk:
|
279 |
+
return input_ids[None, ...], attention_mask[None, ...]
|
280 |
+
|
281 |
+
iids_list = []
|
282 |
+
mask_list = []
|
283 |
+
|
284 |
+
if dense_caption_split_method == "length_split":
|
285 |
+
iids_list, mask_list = split_input_ids(
|
286 |
+
input_ids,
|
287 |
+
attention_mask,
|
288 |
+
0,
|
289 |
+
tokenizer.model_max_length,
|
290 |
+
tokenizer.bos_token_id,
|
291 |
+
tokenizer.eos_token_id,
|
292 |
+
tokenizer.pad_token_id,
|
293 |
+
)
|
294 |
+
elif dense_caption_split_method == "punctuation_split":
|
295 |
+
can_split_tensor = torch.zeros_like(input_ids)
|
296 |
+
for punctuation_id in punctuation_ids:
|
297 |
+
can_split_tensor = torch.logical_or(
|
298 |
+
can_split_tensor, input_ids == punctuation_id
|
299 |
+
)
|
300 |
+
can_split_index = (
|
301 |
+
[0]
|
302 |
+
+ [i[0] for i in torch.nonzero(can_split_tensor).tolist()]
|
303 |
+
+ [len(input_ids) - 1]
|
304 |
+
)
|
305 |
+
start = 1
|
306 |
+
end = 1
|
307 |
+
|
308 |
+
new_can_split_index = []
|
309 |
+
for i in range(len(can_split_index) - 1):
|
310 |
+
pre = can_split_index[i]
|
311 |
+
new_can_split_index.append(pre)
|
312 |
+
nxt = can_split_index[i + 1]
|
313 |
+
cur = pre + tokenizer.model_max_length - 2
|
314 |
+
while cur < nxt:
|
315 |
+
new_can_split_index.append(cur)
|
316 |
+
cur = cur + tokenizer.model_max_length - 2
|
317 |
+
new_can_split_index.append(can_split_index[-1])
|
318 |
+
can_split_index = new_can_split_index
|
319 |
+
|
320 |
+
for i in can_split_index:
|
321 |
+
if i - start + 1 > tokenizer.model_max_length - 2:
|
322 |
+
if end == start:
|
323 |
+
end = start + (tokenizer.model_max_length - 2)
|
324 |
+
ids_chunk = torch.tensor(
|
325 |
+
[tokenizer.pad_token_id] * tokenizer.model_max_length,
|
326 |
+
dtype=torch.int64,
|
327 |
+
)
|
328 |
+
ids_chunk[0] = tokenizer.bos_token_id
|
329 |
+
ids_chunk[1 : 1 + end - start] = input_ids[start:end]
|
330 |
+
ids_chunk[1 + end - start] = input_ids[-1]
|
331 |
+
mask_chunk = torch.zeros(tokenizer.model_max_length).to(torch.int64)
|
332 |
+
mask_chunk[0] = 1
|
333 |
+
mask_chunk[1 : 1 + end - start] = attention_mask[start:end]
|
334 |
+
mask_chunk[1 + end - start] = attention_mask[-1]
|
335 |
+
if ids_chunk[1] == tokenizer.pad_token_id:
|
336 |
+
ids_chunk[1] = tokenizer.eos_token_id
|
337 |
+
mask_chunk[1] = 1
|
338 |
+
if tokenizer.eos_token_id not in ids_chunk:
|
339 |
+
ids_chunk[1 + end - start] = tokenizer.eos_token_id
|
340 |
+
mask_chunk[1 + end - start] = 1
|
341 |
+
iids_list.append(ids_chunk)
|
342 |
+
mask_list.append(mask_chunk)
|
343 |
+
if len(iids_list) == 3:
|
344 |
+
break
|
345 |
+
start = end
|
346 |
+
end = i + 1
|
347 |
+
|
348 |
+
if len(iids_list) == 0:
|
349 |
+
iids_list, mask_list = split_input_ids(
|
350 |
+
input_ids,
|
351 |
+
attention_mask,
|
352 |
+
0,
|
353 |
+
tokenizer.model_max_length,
|
354 |
+
tokenizer.bos_token_id,
|
355 |
+
tokenizer.eos_token_id,
|
356 |
+
tokenizer.pad_token_id,
|
357 |
+
)
|
358 |
+
elif len(iids_list) == 1:
|
359 |
+
iids_list1, mask_list1 = split_input_ids(
|
360 |
+
input_ids,
|
361 |
+
attention_mask,
|
362 |
+
start,
|
363 |
+
tokenizer.model_max_length,
|
364 |
+
tokenizer.bos_token_id,
|
365 |
+
tokenizer.eos_token_id,
|
366 |
+
tokenizer.pad_token_id,
|
367 |
+
)
|
368 |
+
iids_list = (iids_list + iids_list1)[:3]
|
369 |
+
mask_list = (mask_list + mask_list1)[:3]
|
370 |
+
elif len(iids_list) == 2:
|
371 |
+
iids_list1, mask_list1 = split_input_ids(
|
372 |
+
input_ids,
|
373 |
+
attention_mask,
|
374 |
+
start,
|
375 |
+
tokenizer.model_max_length,
|
376 |
+
tokenizer.bos_token_id,
|
377 |
+
tokenizer.eos_token_id,
|
378 |
+
tokenizer.pad_token_id,
|
379 |
+
)
|
380 |
+
iids_list = (iids_list + iids_list1)[:3]
|
381 |
+
mask_list = (mask_list + mask_list1)[:3]
|
382 |
+
else:
|
383 |
+
raise NotImplementedError
|
384 |
+
|
385 |
+
input_ids = torch.stack(iids_list)
|
386 |
+
attention_mask = torch.stack(mask_list)
|
387 |
+
|
388 |
+
return input_ids, attention_mask
|
389 |
+
|
390 |
+
|
391 |
+
class AniMemoryPipeline(
|
392 |
+
DiffusionPipeline,
|
393 |
+
StableDiffusionMixin,
|
394 |
+
FromSingleFileMixin,
|
395 |
+
StableDiffusionXLLoraLoaderMixin,
|
396 |
+
TextualInversionLoaderMixin,
|
397 |
+
IPAdapterMixin,
|
398 |
+
):
|
399 |
+
# TODO: review
|
400 |
+
r"""
|
401 |
+
Pipeline for text-to-image generation using Stable Diffusion XL.
|
402 |
+
|
403 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
404 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
405 |
+
|
406 |
+
The pipeline also inherits the following loading methods:
|
407 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
408 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
409 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
410 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
411 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
412 |
+
|
413 |
+
Args:
|
414 |
+
vae ([`MoVQ`]):
|
415 |
+
Variational Auto-Encoder (VAE) Model. AniMemory uses
|
416 |
+
[MoVQ](https://github.com/ai-forever/Kandinsky-3/blob/main/kandinsky3/movq.py)
|
417 |
+
text_encoder ([`AniMemoryT5`]):
|
418 |
+
Frozen text-encoder. AniMemory builds based on
|
419 |
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel).
|
420 |
+
text_encoder_2 ([`AniMemoryAltCLip`]):
|
421 |
+
Second frozen text-encoder. AniMemory builds based on
|
422 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection).
|
423 |
+
tokenizer (`XLMRobertaTokenizerFast`):
|
424 |
+
Tokenizer of class
|
425 |
+
[XLMRobertaTokenizerFast](https://huggingface.co/docs/transformers/v4.46.3/en/model_doc/xlm-roberta#transformers.XLMRobertaTokenizerFast).
|
426 |
+
tokenizer_2 (`XLMRobertaTokenizerFast`):
|
427 |
+
Second Tokenizer of class
|
428 |
+
[XLMRobertaTokenizerFast](https://huggingface.co/docs/transformers/v4.46.3/en/model_doc/xlm-roberta#transformers.XLMRobertaTokenizerFast).
|
429 |
+
unet ([`UNet2DConditionModel`]):
|
430 |
+
Conditional U-Net architecture to denoise the encoded image latents.
|
431 |
+
scheduler ([`EulerAncestralDiscreteXPredScheduler`]):
|
432 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
|
433 |
+
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
434 |
+
Whether the negative prompt embeddings shall be forced to always be set to 0.
|
435 |
+
"""
|
436 |
+
|
437 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
|
438 |
+
_optional_components = [
|
439 |
+
"tokenizer",
|
440 |
+
"tokenizer_2",
|
441 |
+
"text_encoder",
|
442 |
+
"text_encoder_2",
|
443 |
+
"image_encoder",
|
444 |
+
"feature_extractor",
|
445 |
+
]
|
446 |
+
_callback_tensor_inputs = [
|
447 |
+
"latents",
|
448 |
+
"prompt_embeds",
|
449 |
+
"negative_prompt_embeds",
|
450 |
+
"add_text_embeds",
|
451 |
+
"add_time_ids",
|
452 |
+
"negative_pooled_prompt_embeds",
|
453 |
+
"negative_add_time_ids",
|
454 |
+
]
|
455 |
+
|
456 |
+
def __init__(
|
457 |
+
self,
|
458 |
+
vae: "MoVQ", # type: ignore
|
459 |
+
text_encoder: "AniMemoryT5", # type: ignore
|
460 |
+
text_encoder_2: "AniMemoryAltCLip", # type: ignore
|
461 |
+
tokenizer: XLMRobertaTokenizerFast,
|
462 |
+
tokenizer_2: XLMRobertaTokenizerFast,
|
463 |
+
unet: UNet2DConditionModel,
|
464 |
+
scheduler: "EulerAncestralDiscreteXPredScheduler", # type: ignore
|
465 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
466 |
+
feature_extractor: CLIPImageProcessor = None,
|
467 |
+
force_zeros_for_empty_prompt: bool = True,
|
468 |
+
):
|
469 |
+
super().__init__()
|
470 |
+
|
471 |
+
self.register_modules(
|
472 |
+
vae=vae,
|
473 |
+
text_encoder=text_encoder,
|
474 |
+
text_encoder_2=text_encoder_2,
|
475 |
+
tokenizer=tokenizer,
|
476 |
+
tokenizer_2=tokenizer_2,
|
477 |
+
unet=unet,
|
478 |
+
scheduler=scheduler,
|
479 |
+
image_encoder=image_encoder,
|
480 |
+
feature_extractor=feature_extractor,
|
481 |
+
)
|
482 |
+
self.register_to_config(
|
483 |
+
force_zeros_for_empty_prompt=force_zeros_for_empty_prompt
|
484 |
+
)
|
485 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
486 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
487 |
+
|
488 |
+
self.default_sample_size = self.unet.config.sample_size
|
489 |
+
|
490 |
+
self.unet.time_proj.downscale_freq_shift = 1
|
491 |
+
|
492 |
+
self.scheduler.config.clip_sample = False
|
493 |
+
self.scheduler.config.timestep_spacing = "linspace"
|
494 |
+
self.scheduler.config.prediction_type = "sample"
|
495 |
+
self.scheduler.rescale_betas_zero_snr()
|
496 |
+
|
497 |
+
def encode_prompt(
|
498 |
+
self,
|
499 |
+
prompt: str,
|
500 |
+
prompt_2: Optional[str] = None,
|
501 |
+
device: Optional[torch.device] = None,
|
502 |
+
num_images_per_prompt: int = 1,
|
503 |
+
do_classifier_free_guidance: bool = True,
|
504 |
+
negative_prompt: Optional[str] = None,
|
505 |
+
negative_prompt_2: Optional[str] = None,
|
506 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
507 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
508 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
509 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
510 |
+
lora_scale: Optional[float] = None,
|
511 |
+
clip_skip: Optional[int] = None,
|
512 |
+
):
|
513 |
+
r"""
|
514 |
+
Encodes the prompt into text encoder hidden states.
|
515 |
+
|
516 |
+
Args:
|
517 |
+
prompt (`str` or `List[str]`, *optional*):
|
518 |
+
prompt to be encoded
|
519 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
520 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
521 |
+
used in both text-encoders
|
522 |
+
device: (`torch.device`):
|
523 |
+
torch device
|
524 |
+
num_images_per_prompt (`int`):
|
525 |
+
number of images that should be generated per prompt
|
526 |
+
do_classifier_free_guidance (`bool`):
|
527 |
+
whether to use classifier free guidance or not
|
528 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
529 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
530 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
531 |
+
less than `1`).
|
532 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
533 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
534 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
535 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
536 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
537 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
538 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
539 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
540 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
541 |
+
argument.
|
542 |
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
543 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
544 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
545 |
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
546 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
547 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
548 |
+
input argument.
|
549 |
+
lora_scale (`float`, *optional*):
|
550 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
551 |
+
clip_skip (`int`, *optional*):
|
552 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
553 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
554 |
+
"""
|
555 |
+
if device is None:
|
556 |
+
device = self._execution_device
|
557 |
+
|
558 |
+
# set lora scale so that monkey patched LoRA
|
559 |
+
# function of text encoder can correctly access it
|
560 |
+
if lora_scale is not None and isinstance(
|
561 |
+
self, StableDiffusionXLLoraLoaderMixin
|
562 |
+
):
|
563 |
+
self._lora_scale = lora_scale
|
564 |
+
|
565 |
+
# dynamically adjust the LoRA scale
|
566 |
+
if self.text_encoder is not None:
|
567 |
+
if not USE_PEFT_BACKEND:
|
568 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
569 |
+
else:
|
570 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
571 |
+
|
572 |
+
if self.text_encoder_2 is not None:
|
573 |
+
if not USE_PEFT_BACKEND:
|
574 |
+
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
|
575 |
+
else:
|
576 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
577 |
+
|
578 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
579 |
+
|
580 |
+
if prompt is not None:
|
581 |
+
batch_size = len(prompt)
|
582 |
+
else:
|
583 |
+
batch_size = prompt_embeds.shape[0]
|
584 |
+
|
585 |
+
# Define tokenizers and text encoders
|
586 |
+
tokenizers = (
|
587 |
+
[self.tokenizer, self.tokenizer_2]
|
588 |
+
if self.tokenizer is not None
|
589 |
+
else [self.tokenizer_2]
|
590 |
+
)
|
591 |
+
text_encoders = (
|
592 |
+
[self.text_encoder, self.text_encoder_2]
|
593 |
+
if self.text_encoder is not None
|
594 |
+
else [self.text_encoder_2]
|
595 |
+
)
|
596 |
+
|
597 |
+
punctuation_ids = [
|
598 |
+
[5, 4, 74, 32, 38, 4730, 30, 4, 74, 32, 38, 4730],
|
599 |
+
[5, 4, 74, 32, 38, 4730, 30, 4, 74, 32, 38, 4730],
|
600 |
+
]
|
601 |
+
max_token_length = 227
|
602 |
+
|
603 |
+
if prompt_embeds is None:
|
604 |
+
prompt_2 = prompt_2 or prompt
|
605 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
606 |
+
|
607 |
+
# textual inversion: process multi-vector tokens if necessary
|
608 |
+
prompt_embeds_list = []
|
609 |
+
prompts = [prompt, prompt_2]
|
610 |
+
text_encoder_idx = 0
|
611 |
+
for prompt, tokenizer, text_encoder in zip(
|
612 |
+
prompts, tokenizers, text_encoders
|
613 |
+
):
|
614 |
+
text_input_ids, attention_mask = get_input_ids(
|
615 |
+
prompt,
|
616 |
+
tokenizers[text_encoder_idx],
|
617 |
+
max_token_length,
|
618 |
+
"punctuation_split",
|
619 |
+
False if text_encoder_idx == 0 else True,
|
620 |
+
punctuation_ids[text_encoder_idx],
|
621 |
+
)
|
622 |
+
|
623 |
+
tk_len = text_input_ids.shape[-1]
|
624 |
+
text_input_ids = text_input_ids.reshape((-1, tk_len))
|
625 |
+
attention_mask = attention_mask.reshape((-1, tk_len))
|
626 |
+
|
627 |
+
prompt_embeds, pooled_output = text_encoder(
|
628 |
+
text_input_ids.to(device), attention_mask.to(device)
|
629 |
+
)
|
630 |
+
|
631 |
+
if text_encoder_idx == 1:
|
632 |
+
tmp_ids = text_input_ids.reshape(-1, 3, text_input_ids.shape[-1])
|
633 |
+
_, n2, tk_len2 = tmp_ids.size()
|
634 |
+
prompt_embeds = prompt_embeds.reshape(
|
635 |
+
(-1, n2 * tk_len2, prompt_embeds.shape[-1])
|
636 |
+
)
|
637 |
+
if n2 > 1:
|
638 |
+
states_list = [prompt_embeds[:, 0].unsqueeze(1)]
|
639 |
+
for i in range(
|
640 |
+
1,
|
641 |
+
max_token_length,
|
642 |
+
tokenizers[text_encoder_idx].model_max_length,
|
643 |
+
):
|
644 |
+
states_list.append(
|
645 |
+
prompt_embeds[
|
646 |
+
:,
|
647 |
+
i : i
|
648 |
+
+ tokenizers[text_encoder_idx].model_max_length
|
649 |
+
- 2,
|
650 |
+
]
|
651 |
+
)
|
652 |
+
states_list.append(prompt_embeds[:, -1].unsqueeze(1))
|
653 |
+
prompt_embeds = torch.cat(states_list, dim=1)
|
654 |
+
|
655 |
+
pooled_prompt_embeds = pooled_output[::n2]
|
656 |
+
|
657 |
+
prompt_embeds_list.append(prompt_embeds)
|
658 |
+
text_encoder_idx += 1
|
659 |
+
|
660 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
661 |
+
|
662 |
+
# get unconditional embeddings for classifier free guidance
|
663 |
+
zero_out_negative_prompt = (
|
664 |
+
negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
665 |
+
)
|
666 |
+
if (
|
667 |
+
do_classifier_free_guidance
|
668 |
+
and negative_prompt_embeds is None
|
669 |
+
and zero_out_negative_prompt
|
670 |
+
):
|
671 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
672 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
673 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
674 |
+
negative_prompt = negative_prompt or ""
|
675 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
676 |
+
|
677 |
+
negative_prompt = (
|
678 |
+
batch_size * [negative_prompt]
|
679 |
+
if isinstance(negative_prompt, str)
|
680 |
+
else negative_prompt
|
681 |
+
)
|
682 |
+
negative_prompt_2 = (
|
683 |
+
batch_size * [negative_prompt_2]
|
684 |
+
if isinstance(negative_prompt_2, str)
|
685 |
+
else negative_prompt_2
|
686 |
+
)
|
687 |
+
|
688 |
+
uncond_tokens: List[str]
|
689 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
690 |
+
raise TypeError(
|
691 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
692 |
+
f" {type(prompt)}."
|
693 |
+
)
|
694 |
+
elif batch_size != len(negative_prompt):
|
695 |
+
raise ValueError(
|
696 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
697 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
698 |
+
" the batch size of `prompt`."
|
699 |
+
)
|
700 |
+
else:
|
701 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
702 |
+
|
703 |
+
negative_prompt_embeds_list = []
|
704 |
+
text_encoder_idx = 0
|
705 |
+
for negative_prompt, tokenizer, text_encoder in zip(
|
706 |
+
uncond_tokens, tokenizers, text_encoders
|
707 |
+
):
|
708 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
709 |
+
negative_prompt = self.maybe_convert_prompt(
|
710 |
+
negative_prompt, tokenizer
|
711 |
+
)
|
712 |
+
|
713 |
+
negative_text_input_ids, negative_attention_mask = get_input_ids(
|
714 |
+
negative_prompt,
|
715 |
+
tokenizers[text_encoder_idx],
|
716 |
+
max_token_length,
|
717 |
+
"punctuation_split",
|
718 |
+
False if text_encoder_idx == 0 else True,
|
719 |
+
punctuation_ids[text_encoder_idx],
|
720 |
+
)
|
721 |
+
|
722 |
+
tk_len = negative_text_input_ids.shape[-1]
|
723 |
+
negative_text_input_ids = negative_text_input_ids.reshape((-1, tk_len))
|
724 |
+
negative_attention_mask = negative_attention_mask.reshape((-1, tk_len))
|
725 |
+
|
726 |
+
negative_prompt_embeds, negative_pooled_ouput = text_encoder(
|
727 |
+
negative_text_input_ids.to(device),
|
728 |
+
negative_attention_mask.to(device),
|
729 |
+
)
|
730 |
+
|
731 |
+
if text_encoder_idx == 1:
|
732 |
+
negative_tmp_ids = negative_text_input_ids.reshape(
|
733 |
+
-1, 3, negative_text_input_ids.shape[-1]
|
734 |
+
)
|
735 |
+
_, n2, tk_len2 = negative_tmp_ids.size()
|
736 |
+
negative_prompt_embeds = negative_prompt_embeds.reshape(
|
737 |
+
(-1, n2 * tk_len2, negative_prompt_embeds.shape[-1])
|
738 |
+
)
|
739 |
+
if n2 > 1:
|
740 |
+
states_list = [negative_prompt_embeds[:, 0].unsqueeze(1)]
|
741 |
+
for i in range(
|
742 |
+
1,
|
743 |
+
max_token_length,
|
744 |
+
tokenizers[text_encoder_idx].model_max_length,
|
745 |
+
):
|
746 |
+
states_list.append(
|
747 |
+
negative_prompt_embeds[
|
748 |
+
:,
|
749 |
+
i : i
|
750 |
+
+ tokenizers[text_encoder_idx].model_max_length
|
751 |
+
- 2,
|
752 |
+
]
|
753 |
+
)
|
754 |
+
states_list.append(negative_prompt_embeds[:, -1].unsqueeze(1))
|
755 |
+
negative_prompt_embeds = torch.cat(states_list, dim=1)
|
756 |
+
negative_pooled_prompt_embeds = negative_pooled_ouput[::n2]
|
757 |
+
|
758 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
759 |
+
text_encoder_idx += 1
|
760 |
+
|
761 |
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
762 |
+
|
763 |
+
if self.text_encoder_2 is not None:
|
764 |
+
prompt_embeds = prompt_embeds.to(
|
765 |
+
dtype=self.text_encoder_2.dtype, device=device
|
766 |
+
)
|
767 |
+
else:
|
768 |
+
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
769 |
+
|
770 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
771 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
772 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
773 |
+
prompt_embeds = prompt_embeds.view(
|
774 |
+
bs_embed * num_images_per_prompt, seq_len, -1
|
775 |
+
)
|
776 |
+
|
777 |
+
if do_classifier_free_guidance:
|
778 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
779 |
+
seq_len = negative_prompt_embeds.shape[1]
|
780 |
+
|
781 |
+
if self.text_encoder_2 is not None:
|
782 |
+
negative_prompt_embeds = negative_prompt_embeds.to(
|
783 |
+
dtype=self.text_encoder_2.dtype, device=device
|
784 |
+
)
|
785 |
+
else:
|
786 |
+
negative_prompt_embeds = negative_prompt_embeds.to(
|
787 |
+
dtype=self.unet.dtype, device=device
|
788 |
+
)
|
789 |
+
|
790 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
791 |
+
1, num_images_per_prompt, 1
|
792 |
+
)
|
793 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
794 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
795 |
+
)
|
796 |
+
|
797 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(
|
798 |
+
1, num_images_per_prompt
|
799 |
+
).view(bs_embed * num_images_per_prompt, -1)
|
800 |
+
if do_classifier_free_guidance:
|
801 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(
|
802 |
+
1, num_images_per_prompt
|
803 |
+
).view(bs_embed * num_images_per_prompt, -1)
|
804 |
+
|
805 |
+
if self.text_encoder is not None:
|
806 |
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
807 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
808 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
809 |
+
|
810 |
+
if self.text_encoder_2 is not None:
|
811 |
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
812 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
813 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
814 |
+
# breakpoint()
|
815 |
+
return (
|
816 |
+
prompt_embeds,
|
817 |
+
negative_prompt_embeds,
|
818 |
+
pooled_prompt_embeds,
|
819 |
+
negative_pooled_prompt_embeds,
|
820 |
+
)
|
821 |
+
|
822 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
823 |
+
def encode_image(
|
824 |
+
self, image, device, num_images_per_prompt, output_hidden_states=None
|
825 |
+
):
|
826 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
827 |
+
|
828 |
+
if not isinstance(image, torch.Tensor):
|
829 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
830 |
+
|
831 |
+
image = image.to(device=device, dtype=dtype)
|
832 |
+
if output_hidden_states:
|
833 |
+
image_enc_hidden_states = self.image_encoder(
|
834 |
+
image, output_hidden_states=True
|
835 |
+
).hidden_states[-2]
|
836 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(
|
837 |
+
num_images_per_prompt, dim=0
|
838 |
+
)
|
839 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
840 |
+
torch.zeros_like(image), output_hidden_states=True
|
841 |
+
).hidden_states[-2]
|
842 |
+
uncond_image_enc_hidden_states = (
|
843 |
+
uncond_image_enc_hidden_states.repeat_interleave(
|
844 |
+
num_images_per_prompt, dim=0
|
845 |
+
)
|
846 |
+
)
|
847 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
848 |
+
else:
|
849 |
+
image_embeds = self.image_encoder(image).image_embeds
|
850 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
851 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
852 |
+
|
853 |
+
return image_embeds, uncond_image_embeds
|
854 |
+
|
855 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
856 |
+
def prepare_ip_adapter_image_embeds(
|
857 |
+
self,
|
858 |
+
ip_adapter_image,
|
859 |
+
ip_adapter_image_embeds,
|
860 |
+
device,
|
861 |
+
num_images_per_prompt,
|
862 |
+
do_classifier_free_guidance,
|
863 |
+
):
|
864 |
+
image_embeds = []
|
865 |
+
if do_classifier_free_guidance:
|
866 |
+
negative_image_embeds = []
|
867 |
+
if ip_adapter_image_embeds is None:
|
868 |
+
if not isinstance(ip_adapter_image, list):
|
869 |
+
ip_adapter_image = [ip_adapter_image]
|
870 |
+
|
871 |
+
if len(ip_adapter_image) != len(
|
872 |
+
self.unet.encoder_hid_proj.image_projection_layers
|
873 |
+
):
|
874 |
+
raise ValueError(
|
875 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
876 |
+
)
|
877 |
+
|
878 |
+
for single_ip_adapter_image, image_proj_layer in zip(
|
879 |
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
880 |
+
):
|
881 |
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
882 |
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
883 |
+
single_ip_adapter_image, device, 1, output_hidden_state
|
884 |
+
)
|
885 |
+
|
886 |
+
image_embeds.append(single_image_embeds[None, :])
|
887 |
+
if do_classifier_free_guidance:
|
888 |
+
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
889 |
+
else:
|
890 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
891 |
+
if do_classifier_free_guidance:
|
892 |
+
(
|
893 |
+
single_negative_image_embeds,
|
894 |
+
single_image_embeds,
|
895 |
+
) = single_image_embeds.chunk(2)
|
896 |
+
negative_image_embeds.append(single_negative_image_embeds)
|
897 |
+
image_embeds.append(single_image_embeds)
|
898 |
+
|
899 |
+
ip_adapter_image_embeds = []
|
900 |
+
for i, single_image_embeds in enumerate(image_embeds):
|
901 |
+
single_image_embeds = torch.cat(
|
902 |
+
[single_image_embeds] * num_images_per_prompt, dim=0
|
903 |
+
)
|
904 |
+
if do_classifier_free_guidance:
|
905 |
+
single_negative_image_embeds = torch.cat(
|
906 |
+
[negative_image_embeds[i]] * num_images_per_prompt, dim=0
|
907 |
+
)
|
908 |
+
single_image_embeds = torch.cat(
|
909 |
+
[single_negative_image_embeds, single_image_embeds], dim=0
|
910 |
+
)
|
911 |
+
|
912 |
+
single_image_embeds = single_image_embeds.to(device=device)
|
913 |
+
ip_adapter_image_embeds.append(single_image_embeds)
|
914 |
+
|
915 |
+
return ip_adapter_image_embeds
|
916 |
+
|
917 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
918 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
919 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
920 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
921 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
922 |
+
# and should be between [0, 1]
|
923 |
+
|
924 |
+
accepts_eta = "eta" in set(
|
925 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
926 |
+
)
|
927 |
+
extra_step_kwargs = {}
|
928 |
+
if accepts_eta:
|
929 |
+
extra_step_kwargs["eta"] = eta
|
930 |
+
|
931 |
+
# check if the scheduler accepts generator
|
932 |
+
accepts_generator = "generator" in set(
|
933 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
934 |
+
)
|
935 |
+
if accepts_generator:
|
936 |
+
extra_step_kwargs["generator"] = generator
|
937 |
+
return extra_step_kwargs
|
938 |
+
|
939 |
+
def check_inputs(
|
940 |
+
self,
|
941 |
+
prompt,
|
942 |
+
prompt_2,
|
943 |
+
height,
|
944 |
+
width,
|
945 |
+
callback_steps,
|
946 |
+
negative_prompt=None,
|
947 |
+
negative_prompt_2=None,
|
948 |
+
prompt_embeds=None,
|
949 |
+
negative_prompt_embeds=None,
|
950 |
+
pooled_prompt_embeds=None,
|
951 |
+
negative_pooled_prompt_embeds=None,
|
952 |
+
ip_adapter_image=None,
|
953 |
+
ip_adapter_image_embeds=None,
|
954 |
+
callback_on_step_end_tensor_inputs=None,
|
955 |
+
):
|
956 |
+
if height % 8 != 0 or width % 8 != 0:
|
957 |
+
raise ValueError(
|
958 |
+
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
|
959 |
+
)
|
960 |
+
|
961 |
+
if callback_steps is not None and (
|
962 |
+
not isinstance(callback_steps, int) or callback_steps <= 0
|
963 |
+
):
|
964 |
+
raise ValueError(
|
965 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
966 |
+
f" {type(callback_steps)}."
|
967 |
+
)
|
968 |
+
|
969 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
970 |
+
k in self._callback_tensor_inputs
|
971 |
+
for k in callback_on_step_end_tensor_inputs
|
972 |
+
):
|
973 |
+
raise ValueError(
|
974 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
975 |
+
)
|
976 |
+
|
977 |
+
if prompt is not None and prompt_embeds is not None:
|
978 |
+
raise ValueError(
|
979 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
980 |
+
" only forward one of the two."
|
981 |
+
)
|
982 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
983 |
+
raise ValueError(
|
984 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
985 |
+
" only forward one of the two."
|
986 |
+
)
|
987 |
+
elif prompt is None and prompt_embeds is None:
|
988 |
+
raise ValueError(
|
989 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
990 |
+
)
|
991 |
+
elif prompt is not None and (
|
992 |
+
not isinstance(prompt, str) and not isinstance(prompt, list)
|
993 |
+
):
|
994 |
+
raise ValueError(
|
995 |
+
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
|
996 |
+
)
|
997 |
+
elif prompt_2 is not None and (
|
998 |
+
not isinstance(prompt_2, str) and not isinstance(prompt_2, list)
|
999 |
+
):
|
1000 |
+
raise ValueError(
|
1001 |
+
f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}"
|
1002 |
+
)
|
1003 |
+
|
1004 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
1005 |
+
raise ValueError(
|
1006 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
1007 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
1008 |
+
)
|
1009 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
1010 |
+
raise ValueError(
|
1011 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
1012 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
1013 |
+
)
|
1014 |
+
|
1015 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
1016 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
1017 |
+
raise ValueError(
|
1018 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
1019 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
1020 |
+
f" {negative_prompt_embeds.shape}."
|
1021 |
+
)
|
1022 |
+
|
1023 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
1024 |
+
raise ValueError(
|
1025 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
1026 |
+
)
|
1027 |
+
|
1028 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
1029 |
+
raise ValueError(
|
1030 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
1031 |
+
)
|
1032 |
+
|
1033 |
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
1034 |
+
raise ValueError(
|
1035 |
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
1036 |
+
)
|
1037 |
+
|
1038 |
+
if ip_adapter_image_embeds is not None:
|
1039 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
1040 |
+
raise ValueError(
|
1041 |
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
1042 |
+
)
|
1043 |
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
1044 |
+
raise ValueError(
|
1045 |
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
1046 |
+
)
|
1047 |
+
|
1048 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
1049 |
+
def prepare_latents(
|
1050 |
+
self,
|
1051 |
+
batch_size,
|
1052 |
+
num_channels_latents,
|
1053 |
+
height,
|
1054 |
+
width,
|
1055 |
+
dtype,
|
1056 |
+
device,
|
1057 |
+
generator,
|
1058 |
+
latents=None,
|
1059 |
+
):
|
1060 |
+
shape = (
|
1061 |
+
batch_size,
|
1062 |
+
num_channels_latents,
|
1063 |
+
int(height) // self.vae_scale_factor,
|
1064 |
+
int(width) // self.vae_scale_factor,
|
1065 |
+
)
|
1066 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
1067 |
+
raise ValueError(
|
1068 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
1069 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
1070 |
+
)
|
1071 |
+
|
1072 |
+
if latents is None:
|
1073 |
+
latents = randn_tensor(
|
1074 |
+
shape, generator=generator, device=device, dtype=dtype
|
1075 |
+
)
|
1076 |
+
else:
|
1077 |
+
latents = latents.to(device)
|
1078 |
+
|
1079 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
1080 |
+
latents = latents * self.scheduler.init_noise_sigma
|
1081 |
+
return latents
|
1082 |
+
|
1083 |
+
def _get_add_time_ids(
|
1084 |
+
self,
|
1085 |
+
original_size,
|
1086 |
+
crops_coords_top_left,
|
1087 |
+
target_size,
|
1088 |
+
dtype,
|
1089 |
+
text_encoder_projection_dim=None,
|
1090 |
+
):
|
1091 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
1092 |
+
|
1093 |
+
passed_add_embed_dim = (
|
1094 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids)
|
1095 |
+
+ text_encoder_projection_dim
|
1096 |
+
)
|
1097 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
1098 |
+
|
1099 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
1100 |
+
raise ValueError(
|
1101 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
1102 |
+
)
|
1103 |
+
|
1104 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
1105 |
+
return add_time_ids
|
1106 |
+
|
1107 |
+
@property
|
1108 |
+
def device(self) -> torch.device:
|
1109 |
+
r"""
|
1110 |
+
Returns:
|
1111 |
+
`torch.device`: The torch device on which the pipeline is located.
|
1112 |
+
"""
|
1113 |
+
module_names, _ = self._get_signature_keys(self)
|
1114 |
+
modules = [getattr(self, n, None) for n in module_names]
|
1115 |
+
modules = [m for m in modules if isinstance(m, torch.nn.Module)]
|
1116 |
+
|
1117 |
+
for module in modules:
|
1118 |
+
return module.device
|
1119 |
+
|
1120 |
+
return torch.device("cpu")
|
1121 |
+
|
1122 |
+
@property
|
1123 |
+
def _execution_device(self):
|
1124 |
+
"""
|
1125 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
1126 |
+
[`~DiffusionPipeline.enable_sequential_cpu_offload`] the execution device can only be inferred from
|
1127 |
+
Accelerate's module hooks.
|
1128 |
+
"""
|
1129 |
+
for name, model in self.components.items():
|
1130 |
+
if (
|
1131 |
+
not isinstance(model, torch.nn.Module)
|
1132 |
+
or name in self._exclude_from_cpu_offload
|
1133 |
+
):
|
1134 |
+
continue
|
1135 |
+
|
1136 |
+
if not hasattr(model, "_hf_hook"):
|
1137 |
+
return self.device
|
1138 |
+
for module in model.modules():
|
1139 |
+
if (
|
1140 |
+
hasattr(module, "_hf_hook")
|
1141 |
+
and hasattr(module._hf_hook, "execution_device")
|
1142 |
+
and module._hf_hook.execution_device is not None
|
1143 |
+
):
|
1144 |
+
return torch.device(module._hf_hook.execution_device)
|
1145 |
+
return self.device
|
1146 |
+
|
1147 |
+
def upcast_vae(self):
|
1148 |
+
dtype = self.vae.dtype
|
1149 |
+
self.vae.to(dtype=torch.float32)
|
1150 |
+
use_torch_2_0_or_xformers = isinstance(
|
1151 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
1152 |
+
(
|
1153 |
+
AttnProcessor2_0,
|
1154 |
+
XFormersAttnProcessor,
|
1155 |
+
FusedAttnProcessor2_0,
|
1156 |
+
),
|
1157 |
+
)
|
1158 |
+
# if xformers or torch_2_0 is used attention block does not need
|
1159 |
+
# to be in float32 which can save lots of memory
|
1160 |
+
if use_torch_2_0_or_xformers:
|
1161 |
+
self.vae.post_quant_conv.to(dtype)
|
1162 |
+
self.vae.decoder.conv_in.to(dtype)
|
1163 |
+
self.vae.decoder.mid_block.to(dtype)
|
1164 |
+
|
1165 |
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
1166 |
+
def get_guidance_scale_embedding(
|
1167 |
+
self,
|
1168 |
+
w: torch.Tensor,
|
1169 |
+
embedding_dim: int = 512,
|
1170 |
+
dtype: torch.dtype = torch.float32,
|
1171 |
+
) -> torch.Tensor:
|
1172 |
+
"""
|
1173 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
1174 |
+
|
1175 |
+
Args:
|
1176 |
+
w (`torch.Tensor`):
|
1177 |
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
1178 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
1179 |
+
Dimension of the embeddings to generate.
|
1180 |
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
1181 |
+
Data type of the generated embeddings.
|
1182 |
+
|
1183 |
+
Returns:
|
1184 |
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
1185 |
+
"""
|
1186 |
+
assert len(w.shape) == 1
|
1187 |
+
w = w * 1000.0
|
1188 |
+
|
1189 |
+
half_dim = embedding_dim // 2
|
1190 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
1191 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
1192 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
1193 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
1194 |
+
if embedding_dim % 2 == 1: # zero pad
|
1195 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
1196 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
1197 |
+
return emb
|
1198 |
+
|
1199 |
+
@property
|
1200 |
+
def guidance_scale(self):
|
1201 |
+
return self._guidance_scale
|
1202 |
+
|
1203 |
+
@property
|
1204 |
+
def guidance_rescale(self):
|
1205 |
+
return self._guidance_rescale
|
1206 |
+
|
1207 |
+
@property
|
1208 |
+
def clip_skip(self):
|
1209 |
+
return self._clip_skip
|
1210 |
+
|
1211 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1212 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1213 |
+
# corresponds to doing no classifier free guidance.
|
1214 |
+
@property
|
1215 |
+
def do_classifier_free_guidance(self):
|
1216 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
1217 |
+
|
1218 |
+
@property
|
1219 |
+
def cross_attention_kwargs(self):
|
1220 |
+
return self._cross_attention_kwargs
|
1221 |
+
|
1222 |
+
@property
|
1223 |
+
def denoising_end(self):
|
1224 |
+
return self._denoising_end
|
1225 |
+
|
1226 |
+
@property
|
1227 |
+
def num_timesteps(self):
|
1228 |
+
return self._num_timesteps
|
1229 |
+
|
1230 |
+
@property
|
1231 |
+
def interrupt(self):
|
1232 |
+
return self._interrupt
|
1233 |
+
|
1234 |
+
@torch.no_grad()
|
1235 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
1236 |
+
def __call__(
|
1237 |
+
self,
|
1238 |
+
prompt: Union[str, List[str]] = None,
|
1239 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
1240 |
+
height: Optional[int] = None,
|
1241 |
+
width: Optional[int] = None,
|
1242 |
+
num_inference_steps: int = 50,
|
1243 |
+
timesteps: List[int] = None,
|
1244 |
+
sigmas: List[float] = None,
|
1245 |
+
denoising_end: Optional[float] = None,
|
1246 |
+
guidance_scale: float = 5.0,
|
1247 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
1248 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
1249 |
+
num_images_per_prompt: Optional[int] = 1,
|
1250 |
+
eta: float = 0.0,
|
1251 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
1252 |
+
latents: Optional[torch.Tensor] = None,
|
1253 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
1254 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
1255 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
1256 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
1257 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
1258 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
1259 |
+
output_type: Optional[str] = "pil",
|
1260 |
+
return_dict: bool = True,
|
1261 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1262 |
+
guidance_rescale: float = 0.0,
|
1263 |
+
original_size: Optional[Tuple[int, int]] = None,
|
1264 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
1265 |
+
target_size: Optional[Tuple[int, int]] = None,
|
1266 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
1267 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
1268 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
1269 |
+
clip_skip: Optional[int] = None,
|
1270 |
+
callback_on_step_end: Optional[
|
1271 |
+
Union[
|
1272 |
+
Callable[[int, int, Dict], None],
|
1273 |
+
PipelineCallback,
|
1274 |
+
MultiPipelineCallbacks,
|
1275 |
+
]
|
1276 |
+
] = None,
|
1277 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
1278 |
+
**kwargs,
|
1279 |
+
):
|
1280 |
+
r"""
|
1281 |
+
Function invoked when calling the pipeline for generation.
|
1282 |
+
|
1283 |
+
Args:
|
1284 |
+
prompt (`str` or `List[str]`, *optional*):
|
1285 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
1286 |
+
instead.
|
1287 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
1288 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
1289 |
+
used in both text-encoders
|
1290 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
1291 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
1292 |
+
Anything below 512 pixels won't work well for
|
1293 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
1294 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
1295 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
1296 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
1297 |
+
Anything below 512 pixels won't work well for
|
1298 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
1299 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
1300 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
1301 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1302 |
+
expense of slower inference.
|
1303 |
+
timesteps (`List[int]`, *optional*):
|
1304 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
1305 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
1306 |
+
passed will be used. Must be in descending order.
|
1307 |
+
sigmas (`List[float]`, *optional*):
|
1308 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
1309 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
1310 |
+
will be used.
|
1311 |
+
denoising_end (`float`, *optional*):
|
1312 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
1313 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
1314 |
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
1315 |
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
1316 |
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
1317 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
1318 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
1319 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
1320 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1321 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
1322 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1323 |
+
usually at the expense of lower image quality.
|
1324 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
1325 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
1326 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
1327 |
+
less than `1`).
|
1328 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
1329 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
1330 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
1331 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1332 |
+
The number of images to generate per prompt.
|
1333 |
+
eta (`float`, *optional*, defaults to 0.0):
|
1334 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
1335 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1336 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1337 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
1338 |
+
to make generation deterministic.
|
1339 |
+
latents (`torch.Tensor`, *optional*):
|
1340 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
1341 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1342 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
1343 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
1344 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
1345 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
1346 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
1347 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1348 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
1349 |
+
argument.
|
1350 |
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
1351 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
1352 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
1353 |
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
1354 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1355 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
1356 |
+
input argument.
|
1357 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
1358 |
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
1359 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
1360 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
1361 |
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
1362 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
1363 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
1364 |
+
The output format of the generate image. Choose between
|
1365 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
1366 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1367 |
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
1368 |
+
of a plain tuple.
|
1369 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1370 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1371 |
+
`self.processor` in
|
1372 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1373 |
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
1374 |
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
1375 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
1376 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
1377 |
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
1378 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1379 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
1380 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
1381 |
+
explained in section 2.2 of
|
1382 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1383 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1384 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
1385 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
1386 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1387 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1388 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1389 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
1390 |
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
1391 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1392 |
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1393 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
1394 |
+
micro-conditioning as explained in section 2.2 of
|
1395 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1396 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1397 |
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1398 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
1399 |
+
micro-conditioning as explained in section 2.2 of
|
1400 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1401 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1402 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1403 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
1404 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1405 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1406 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1407 |
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
1408 |
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
1409 |
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
1410 |
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
1411 |
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
1412 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1413 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1414 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1415 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
1416 |
+
|
1417 |
+
Examples:
|
1418 |
+
|
1419 |
+
Returns:
|
1420 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
1421 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
1422 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
1423 |
+
"""
|
1424 |
+
|
1425 |
+
callback = kwargs.pop("callback", None)
|
1426 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
1427 |
+
|
1428 |
+
if callback is not None:
|
1429 |
+
deprecate(
|
1430 |
+
"callback",
|
1431 |
+
"1.0.0",
|
1432 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
1433 |
+
)
|
1434 |
+
if callback_steps is not None:
|
1435 |
+
deprecate(
|
1436 |
+
"callback_steps",
|
1437 |
+
"1.0.0",
|
1438 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
1439 |
+
)
|
1440 |
+
|
1441 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
1442 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
1443 |
+
|
1444 |
+
# 0. Default height and width to unet
|
1445 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
1446 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
1447 |
+
|
1448 |
+
original_size = original_size or (height, width)
|
1449 |
+
target_size = target_size or (height, width)
|
1450 |
+
|
1451 |
+
# 1. Check inputs. Raise error if not correct
|
1452 |
+
self.check_inputs(
|
1453 |
+
prompt,
|
1454 |
+
prompt_2,
|
1455 |
+
height,
|
1456 |
+
width,
|
1457 |
+
callback_steps,
|
1458 |
+
negative_prompt,
|
1459 |
+
negative_prompt_2,
|
1460 |
+
prompt_embeds,
|
1461 |
+
negative_prompt_embeds,
|
1462 |
+
pooled_prompt_embeds,
|
1463 |
+
negative_pooled_prompt_embeds,
|
1464 |
+
ip_adapter_image,
|
1465 |
+
ip_adapter_image_embeds,
|
1466 |
+
callback_on_step_end_tensor_inputs,
|
1467 |
+
)
|
1468 |
+
|
1469 |
+
self._guidance_scale = guidance_scale
|
1470 |
+
self._guidance_rescale = guidance_rescale
|
1471 |
+
self._clip_skip = clip_skip
|
1472 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
1473 |
+
self._denoising_end = denoising_end
|
1474 |
+
self._interrupt = False
|
1475 |
+
|
1476 |
+
# 2. Define call parameters
|
1477 |
+
if prompt is not None and isinstance(prompt, str):
|
1478 |
+
batch_size = 1
|
1479 |
+
elif prompt is not None and isinstance(prompt, list):
|
1480 |
+
batch_size = len(prompt)
|
1481 |
+
else:
|
1482 |
+
batch_size = prompt_embeds.shape[0]
|
1483 |
+
|
1484 |
+
device = self._execution_device
|
1485 |
+
|
1486 |
+
# 3. Encode input prompt
|
1487 |
+
lora_scale = (
|
1488 |
+
self.cross_attention_kwargs.get("scale", None)
|
1489 |
+
if self.cross_attention_kwargs is not None
|
1490 |
+
else None
|
1491 |
+
)
|
1492 |
+
|
1493 |
+
(
|
1494 |
+
prompt_embeds,
|
1495 |
+
negative_prompt_embeds,
|
1496 |
+
pooled_prompt_embeds,
|
1497 |
+
negative_pooled_prompt_embeds,
|
1498 |
+
) = self.encode_prompt(
|
1499 |
+
prompt=prompt,
|
1500 |
+
prompt_2=prompt_2,
|
1501 |
+
device=device,
|
1502 |
+
num_images_per_prompt=num_images_per_prompt,
|
1503 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1504 |
+
negative_prompt=negative_prompt,
|
1505 |
+
negative_prompt_2=negative_prompt_2,
|
1506 |
+
prompt_embeds=prompt_embeds,
|
1507 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1508 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
1509 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1510 |
+
lora_scale=lora_scale,
|
1511 |
+
clip_skip=self.clip_skip,
|
1512 |
+
)
|
1513 |
+
|
1514 |
+
# 4. Prepare timesteps
|
1515 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
1516 |
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
1517 |
+
)
|
1518 |
+
|
1519 |
+
# 5. Prepare latent variables
|
1520 |
+
num_channels_latents = self.unet.config.in_channels
|
1521 |
+
# breakpoint()
|
1522 |
+
latents = self.prepare_latents(
|
1523 |
+
batch_size * num_images_per_prompt,
|
1524 |
+
num_channels_latents,
|
1525 |
+
height,
|
1526 |
+
width,
|
1527 |
+
prompt_embeds.dtype,
|
1528 |
+
device,
|
1529 |
+
generator,
|
1530 |
+
latents,
|
1531 |
+
)
|
1532 |
+
|
1533 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1534 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1535 |
+
|
1536 |
+
# 7. Prepare added time ids & embeddings
|
1537 |
+
add_text_embeds = pooled_prompt_embeds
|
1538 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
1539 |
+
|
1540 |
+
add_time_ids = self._get_add_time_ids(
|
1541 |
+
original_size,
|
1542 |
+
crops_coords_top_left,
|
1543 |
+
target_size,
|
1544 |
+
dtype=prompt_embeds.dtype,
|
1545 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1546 |
+
)
|
1547 |
+
if negative_original_size is not None and negative_target_size is not None:
|
1548 |
+
negative_add_time_ids = self._get_add_time_ids(
|
1549 |
+
negative_original_size,
|
1550 |
+
negative_crops_coords_top_left,
|
1551 |
+
negative_target_size,
|
1552 |
+
dtype=prompt_embeds.dtype,
|
1553 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1554 |
+
)
|
1555 |
+
else:
|
1556 |
+
negative_add_time_ids = add_time_ids
|
1557 |
+
|
1558 |
+
if self.do_classifier_free_guidance:
|
1559 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1560 |
+
add_text_embeds = torch.cat(
|
1561 |
+
[negative_pooled_prompt_embeds, add_text_embeds], dim=0
|
1562 |
+
)
|
1563 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
1564 |
+
|
1565 |
+
prompt_embeds = prompt_embeds.to(device)
|
1566 |
+
add_text_embeds = add_text_embeds.to(device)
|
1567 |
+
add_time_ids = add_time_ids.to(device).repeat(
|
1568 |
+
batch_size * num_images_per_prompt, 1
|
1569 |
+
)
|
1570 |
+
|
1571 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1572 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1573 |
+
ip_adapter_image,
|
1574 |
+
ip_adapter_image_embeds,
|
1575 |
+
device,
|
1576 |
+
batch_size * num_images_per_prompt,
|
1577 |
+
self.do_classifier_free_guidance,
|
1578 |
+
)
|
1579 |
+
|
1580 |
+
# 8. Denoising loop
|
1581 |
+
num_warmup_steps = max(
|
1582 |
+
len(timesteps) - num_inference_steps * self.scheduler.order, 0
|
1583 |
+
)
|
1584 |
+
|
1585 |
+
# 8.1 Apply denoising_end
|
1586 |
+
if (
|
1587 |
+
self.denoising_end is not None
|
1588 |
+
and isinstance(self.denoising_end, float)
|
1589 |
+
and self.denoising_end > 0
|
1590 |
+
and self.denoising_end < 1
|
1591 |
+
):
|
1592 |
+
discrete_timestep_cutoff = int(
|
1593 |
+
round(
|
1594 |
+
self.scheduler.config.num_train_timesteps
|
1595 |
+
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
|
1596 |
+
)
|
1597 |
+
)
|
1598 |
+
num_inference_steps = len(
|
1599 |
+
list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))
|
1600 |
+
)
|
1601 |
+
timesteps = timesteps[:num_inference_steps]
|
1602 |
+
|
1603 |
+
# 9. Optionally get Guidance Scale Embedding
|
1604 |
+
timestep_cond = None
|
1605 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
1606 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(
|
1607 |
+
batch_size * num_images_per_prompt
|
1608 |
+
)
|
1609 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
1610 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
1611 |
+
).to(device=device, dtype=latents.dtype)
|
1612 |
+
|
1613 |
+
self._num_timesteps = len(timesteps)
|
1614 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1615 |
+
for i, t in enumerate(timesteps):
|
1616 |
+
if self.interrupt:
|
1617 |
+
continue
|
1618 |
+
|
1619 |
+
# expand the latents if we are doing classifier free guidance
|
1620 |
+
latent_model_input = (
|
1621 |
+
torch.cat([latents] * 2)
|
1622 |
+
if self.do_classifier_free_guidance
|
1623 |
+
else latents
|
1624 |
+
)
|
1625 |
+
|
1626 |
+
latent_model_input = self.scheduler.scale_model_input(
|
1627 |
+
latent_model_input, t
|
1628 |
+
)
|
1629 |
+
|
1630 |
+
# predict the noise residual
|
1631 |
+
added_cond_kwargs = {
|
1632 |
+
"text_embeds": add_text_embeds,
|
1633 |
+
"time_ids": add_time_ids,
|
1634 |
+
}
|
1635 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1636 |
+
added_cond_kwargs["image_embeds"] = image_embeds
|
1637 |
+
noise_pred = self.unet(
|
1638 |
+
latent_model_input,
|
1639 |
+
t,
|
1640 |
+
encoder_hidden_states=prompt_embeds,
|
1641 |
+
timestep_cond=timestep_cond,
|
1642 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1643 |
+
added_cond_kwargs=added_cond_kwargs,
|
1644 |
+
return_dict=False,
|
1645 |
+
)[0]
|
1646 |
+
|
1647 |
+
# perform guidance
|
1648 |
+
if self.do_classifier_free_guidance:
|
1649 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1650 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (
|
1651 |
+
noise_pred_text - noise_pred_uncond
|
1652 |
+
)
|
1653 |
+
|
1654 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
1655 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1656 |
+
noise_pred = rescale_noise_cfg(
|
1657 |
+
noise_pred,
|
1658 |
+
noise_pred_text,
|
1659 |
+
guidance_rescale=self.guidance_rescale,
|
1660 |
+
)
|
1661 |
+
|
1662 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1663 |
+
latents_dtype = latents.dtype
|
1664 |
+
latents = self.scheduler.step(
|
1665 |
+
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
1666 |
+
)[0]
|
1667 |
+
if latents.dtype != latents_dtype:
|
1668 |
+
if torch.backends.mps.is_available():
|
1669 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1670 |
+
latents = latents.to(latents_dtype)
|
1671 |
+
|
1672 |
+
if callback_on_step_end is not None:
|
1673 |
+
callback_kwargs = {}
|
1674 |
+
for k in callback_on_step_end_tensor_inputs:
|
1675 |
+
callback_kwargs[k] = locals()[k]
|
1676 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1677 |
+
|
1678 |
+
latents = callback_outputs.pop("latents", latents)
|
1679 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1680 |
+
negative_prompt_embeds = callback_outputs.pop(
|
1681 |
+
"negative_prompt_embeds", negative_prompt_embeds
|
1682 |
+
)
|
1683 |
+
add_text_embeds = callback_outputs.pop(
|
1684 |
+
"add_text_embeds", add_text_embeds
|
1685 |
+
)
|
1686 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
1687 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
1688 |
+
)
|
1689 |
+
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
1690 |
+
negative_add_time_ids = callback_outputs.pop(
|
1691 |
+
"negative_add_time_ids", negative_add_time_ids
|
1692 |
+
)
|
1693 |
+
|
1694 |
+
# call the callback, if provided
|
1695 |
+
if i == len(timesteps) - 1 or (
|
1696 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
1697 |
+
):
|
1698 |
+
progress_bar.update()
|
1699 |
+
if callback is not None and i % callback_steps == 0:
|
1700 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1701 |
+
callback(step_idx, t, latents)
|
1702 |
+
|
1703 |
+
if XLA_AVAILABLE:
|
1704 |
+
xm.mark_step()
|
1705 |
+
|
1706 |
+
if not output_type == "latent":
|
1707 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
1708 |
+
needs_upcasting = (
|
1709 |
+
self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1710 |
+
)
|
1711 |
+
|
1712 |
+
if needs_upcasting:
|
1713 |
+
self.upcast_vae()
|
1714 |
+
latents = latents.to(
|
1715 |
+
next(iter(self.vae.post_quant_conv.parameters())).dtype
|
1716 |
+
)
|
1717 |
+
elif latents.dtype != self.vae.dtype:
|
1718 |
+
if torch.backends.mps.is_available():
|
1719 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1720 |
+
self.vae = self.vae.to(latents.dtype)
|
1721 |
+
|
1722 |
+
# unscale/denormalize the latents
|
1723 |
+
# denormalize with the mean and std if available and not None
|
1724 |
+
has_latents_mean = (
|
1725 |
+
hasattr(self.vae.config, "latents_mean")
|
1726 |
+
and self.vae.config.latents_mean is not None
|
1727 |
+
)
|
1728 |
+
has_latents_std = (
|
1729 |
+
hasattr(self.vae.config, "latents_std")
|
1730 |
+
and self.vae.config.latents_std is not None
|
1731 |
+
)
|
1732 |
+
if has_latents_mean and has_latents_std:
|
1733 |
+
latents_mean = (
|
1734 |
+
torch.tensor(self.vae.config.latents_mean)
|
1735 |
+
.view(1, 4, 1, 1)
|
1736 |
+
.to(latents.device, latents.dtype)
|
1737 |
+
)
|
1738 |
+
latents_std = (
|
1739 |
+
torch.tensor(self.vae.config.latents_std)
|
1740 |
+
.view(1, 4, 1, 1)
|
1741 |
+
.to(latents.device, latents.dtype)
|
1742 |
+
)
|
1743 |
+
latents = (
|
1744 |
+
latents * latents_std / self.vae.config.scaling_factor
|
1745 |
+
+ latents_mean
|
1746 |
+
)
|
1747 |
+
else:
|
1748 |
+
latents = latents / self.vae.config.scaling_factor
|
1749 |
+
|
1750 |
+
image = self.vae.decode(latents)
|
1751 |
+
|
1752 |
+
# cast back to fp16 if needed
|
1753 |
+
if needs_upcasting:
|
1754 |
+
self.vae.to(dtype=torch.float16)
|
1755 |
+
else:
|
1756 |
+
image = latents
|
1757 |
+
|
1758 |
+
if not output_type == "latent":
|
1759 |
+
# apply watermark if available
|
1760 |
+
# if self.watermark is not None:
|
1761 |
+
# image = self.watermark.apply_watermark(image)
|
1762 |
+
|
1763 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1764 |
+
|
1765 |
+
# Offload all models
|
1766 |
+
self.maybe_free_model_hooks()
|
1767 |
+
|
1768 |
+
if not return_dict:
|
1769 |
+
return (image,)
|
1770 |
+
|
1771 |
+
return AniMemoryPipelineOutput(images=image)
|
scheduler/scheduler_config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_class_name": "
|
3 |
"_diffusers_version": "0.26.0",
|
4 |
"beta_end": 0.012,
|
5 |
"beta_schedule": "scaled_linear",
|
|
|
1 |
{
|
2 |
+
"_class_name": "EulerAncestralDiscreteXPredScheduler",
|
3 |
"_diffusers_version": "0.26.0",
|
4 |
"beta_end": 0.012,
|
5 |
"beta_schedule": "scaled_linear",
|
scheduler/scheduling_euler_ancestral_discrete_x_pred.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Katherine Crowson, AniMemory Team and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import numpy as np
|
18 |
+
import torch
|
19 |
+
|
20 |
+
from diffusers.utils import logging
|
21 |
+
from diffusers.utils.torch_utils import randn_tensor
|
22 |
+
from diffusers.schedulers.scheduling_euler_ancestral_discrete import (
|
23 |
+
EulerAncestralDiscreteScheduler,
|
24 |
+
EulerAncestralDiscreteSchedulerOutput,
|
25 |
+
rescale_zero_terminal_snr,
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
30 |
+
|
31 |
+
|
32 |
+
class EulerAncestralDiscreteXPredScheduler(EulerAncestralDiscreteScheduler):
|
33 |
+
"""
|
34 |
+
Ancestral sampling with Euler method steps. This model inherits from [`EulerAncestralDiscreteScheduler`]. Check the
|
35 |
+
superclass documentation for the args and returns.
|
36 |
+
|
37 |
+
For more details, see the original paper: https://arxiv.org/abs/2403.08381
|
38 |
+
"""
|
39 |
+
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
num_train_timesteps: int = 1000,
|
43 |
+
beta_start: float = 0.0001,
|
44 |
+
beta_end: float = 0.02,
|
45 |
+
beta_schedule: str = "linear",
|
46 |
+
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
47 |
+
prediction_type: str = "epsilon",
|
48 |
+
timestep_spacing: str = "linspace",
|
49 |
+
steps_offset: int = 0,
|
50 |
+
):
|
51 |
+
super(EulerAncestralDiscreteXPredScheduler, self).__init__(
|
52 |
+
num_train_timesteps,
|
53 |
+
beta_start,
|
54 |
+
beta_end,
|
55 |
+
beta_schedule,
|
56 |
+
trained_betas,
|
57 |
+
prediction_type,
|
58 |
+
timestep_spacing,
|
59 |
+
steps_offset,
|
60 |
+
)
|
61 |
+
|
62 |
+
sigmas = np.array((1 - self.alphas_cumprod) ** 0.5, dtype=np.float32)
|
63 |
+
self.sigmas = torch.from_numpy(sigmas)
|
64 |
+
|
65 |
+
def rescale_betas_zero_snr(self):
|
66 |
+
self.betas = rescale_zero_terminal_snr(self.betas)
|
67 |
+
self.alphas = 1.0 - self.betas
|
68 |
+
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
69 |
+
sigmas = np.array((1 - self.alphas_cumprod) ** 0.5)
|
70 |
+
self.sigmas = torch.from_numpy(sigmas)
|
71 |
+
|
72 |
+
@property
|
73 |
+
def init_noise_sigma(self):
|
74 |
+
return 1.0
|
75 |
+
|
76 |
+
def scale_model_input(
|
77 |
+
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
|
78 |
+
) -> torch.FloatTensor:
|
79 |
+
self.is_scale_input_called = True
|
80 |
+
# standard deviation of the initial noise distribution
|
81 |
+
return sample
|
82 |
+
|
83 |
+
def set_timesteps(
|
84 |
+
self, num_inference_steps: int, device: Union[str, torch.device] = None
|
85 |
+
):
|
86 |
+
"""
|
87 |
+
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
|
88 |
+
|
89 |
+
Args:
|
90 |
+
num_inference_steps (`int`):
|
91 |
+
the number of diffusion steps used when generating samples with a pre-trained model.
|
92 |
+
device (`str` or `torch.device`, optional):
|
93 |
+
the device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
94 |
+
"""
|
95 |
+
self.num_inference_steps = num_inference_steps
|
96 |
+
|
97 |
+
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
|
98 |
+
if self.config.timestep_spacing == "linspace":
|
99 |
+
timesteps = np.linspace(
|
100 |
+
0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float
|
101 |
+
)[::-1].copy()
|
102 |
+
elif self.config.timestep_spacing == "leading":
|
103 |
+
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
|
104 |
+
# creates integer timesteps by multiplying by ratio
|
105 |
+
# casting to int to avoid issues when num_inference_step is power of 3
|
106 |
+
timesteps = (
|
107 |
+
(np.arange(0, num_inference_steps) * step_ratio)
|
108 |
+
.round()[::-1]
|
109 |
+
.copy()
|
110 |
+
.astype(float)
|
111 |
+
)
|
112 |
+
timesteps += self.config.steps_offset
|
113 |
+
elif self.config.timestep_spacing == "trailing":
|
114 |
+
step_ratio = self.config.num_train_timesteps / self.num_inference_steps
|
115 |
+
# creates integer timesteps by multiplying by ratio
|
116 |
+
# casting to int to avoid issues when num_inference_step is power of 3
|
117 |
+
timesteps = (
|
118 |
+
(np.arange(self.config.num_train_timesteps, 0, -step_ratio))
|
119 |
+
.round()
|
120 |
+
.copy()
|
121 |
+
.astype(float)
|
122 |
+
)
|
123 |
+
timesteps -= 1
|
124 |
+
else:
|
125 |
+
raise ValueError(
|
126 |
+
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
|
127 |
+
)
|
128 |
+
|
129 |
+
sigmas = np.array((1 - self.alphas_cumprod) ** 0.5)
|
130 |
+
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
|
131 |
+
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
|
132 |
+
|
133 |
+
self.sigmas = torch.from_numpy(sigmas).to(device=device)
|
134 |
+
if str(device).startswith("mps"):
|
135 |
+
# mps does not support float64
|
136 |
+
self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
|
137 |
+
else:
|
138 |
+
self.timesteps = torch.from_numpy(timesteps).to(device=device)
|
139 |
+
|
140 |
+
def step(
|
141 |
+
self,
|
142 |
+
model_output: torch.FloatTensor,
|
143 |
+
timestep: Union[float, torch.FloatTensor],
|
144 |
+
sample: torch.FloatTensor,
|
145 |
+
generator: Optional[torch.Generator] = None,
|
146 |
+
return_dict: bool = True,
|
147 |
+
) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]:
|
148 |
+
"""
|
149 |
+
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
|
150 |
+
process from the learned model outputs (most often the predicted noise).
|
151 |
+
|
152 |
+
Args:
|
153 |
+
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
|
154 |
+
timestep (`float`): current timestep in the diffusion chain.
|
155 |
+
sample (`torch.FloatTensor`):
|
156 |
+
current instance of sample being created by diffusion process.
|
157 |
+
generator (`torch.Generator`, optional): Random number generator.
|
158 |
+
return_dict (`bool`): option for returning tuple rather than EulerAncestralDiscreteSchedulerOutput class
|
159 |
+
|
160 |
+
Returns:
|
161 |
+
[`~schedulers.scheduling_utils.EulerAncestralDiscreteSchedulerOutput`] or `tuple`:
|
162 |
+
[`~schedulers.scheduling_utils.EulerAncestralDiscreteSchedulerOutput`] if `return_dict` is True, otherwise
|
163 |
+
a `tuple`. When returning a tuple, the first element is the sample tensor.
|
164 |
+
|
165 |
+
"""
|
166 |
+
|
167 |
+
if (
|
168 |
+
isinstance(timestep, int)
|
169 |
+
or isinstance(timestep, torch.IntTensor)
|
170 |
+
or isinstance(timestep, torch.LongTensor)
|
171 |
+
):
|
172 |
+
raise ValueError(
|
173 |
+
(
|
174 |
+
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
175 |
+
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
176 |
+
" one of the `scheduler.timesteps` as a timestep."
|
177 |
+
),
|
178 |
+
)
|
179 |
+
|
180 |
+
if isinstance(timestep, torch.Tensor):
|
181 |
+
timestep = timestep.to(self.timesteps.device)
|
182 |
+
|
183 |
+
step_index = (self.timesteps == timestep).nonzero().item()
|
184 |
+
|
185 |
+
if self.config.prediction_type == "sample":
|
186 |
+
pred_original_sample = model_output
|
187 |
+
else:
|
188 |
+
raise ValueError(
|
189 |
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
|
190 |
+
)
|
191 |
+
|
192 |
+
sigma_t = self.sigmas[step_index]
|
193 |
+
sigma_s = self.sigmas[step_index + 1]
|
194 |
+
alpha_t = (1 - sigma_t**2) ** 0.5
|
195 |
+
alpha_s = (1 - sigma_s**2) ** 0.5
|
196 |
+
|
197 |
+
coef_sample = (sigma_s / sigma_t) ** 2 * alpha_t / alpha_s
|
198 |
+
coef_noise = (sigma_s / sigma_t) * (1 - (alpha_t / alpha_s) ** 2) ** 0.5
|
199 |
+
coef_x = alpha_s * (1 - alpha_t**2 / alpha_s**2) / sigma_t**2
|
200 |
+
|
201 |
+
device = model_output.device
|
202 |
+
noise = randn_tensor(
|
203 |
+
model_output.shape,
|
204 |
+
dtype=model_output.dtype,
|
205 |
+
device=device,
|
206 |
+
generator=generator,
|
207 |
+
)
|
208 |
+
prev_sample = (
|
209 |
+
coef_sample * sample + coef_x * pred_original_sample + coef_noise * noise
|
210 |
+
)
|
211 |
+
|
212 |
+
if not return_dict:
|
213 |
+
return (prev_sample,)
|
214 |
+
|
215 |
+
return EulerAncestralDiscreteSchedulerOutput(
|
216 |
+
prev_sample=prev_sample, pred_original_sample=pred_original_sample
|
217 |
+
)
|
218 |
+
|
219 |
+
def add_noise(
|
220 |
+
self,
|
221 |
+
original_samples: torch.FloatTensor,
|
222 |
+
noise: torch.FloatTensor,
|
223 |
+
timesteps: torch.FloatTensor,
|
224 |
+
) -> torch.FloatTensor:
|
225 |
+
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
226 |
+
sigmas = self.sigmas.to(
|
227 |
+
device=original_samples.device, dtype=original_samples.dtype
|
228 |
+
)
|
229 |
+
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
230 |
+
# mps does not support float64
|
231 |
+
schedule_timesteps = self.timesteps.to(
|
232 |
+
original_samples.device, dtype=torch.float32
|
233 |
+
)
|
234 |
+
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
|
235 |
+
else:
|
236 |
+
schedule_timesteps = self.timesteps.to(original_samples.device)
|
237 |
+
timesteps = timesteps.to(original_samples.device)
|
238 |
+
|
239 |
+
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
|
240 |
+
|
241 |
+
sigma = sigmas[step_indices].flatten()
|
242 |
+
while len(sigma.shape) < len(original_samples.shape):
|
243 |
+
sigma = sigma.unsqueeze(-1)
|
244 |
+
|
245 |
+
noisy_samples = original_samples + noise * sigma
|
246 |
+
return noisy_samples
|
text_encoder/animemory_t5.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 AniMemory Team and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from safetensors.torch import load_file
|
19 |
+
from transformers.models.t5.configuration_t5 import T5Config
|
20 |
+
from transformers.models.t5.modeling_t5 import T5Stack
|
21 |
+
|
22 |
+
|
23 |
+
class AniMemoryT5(torch.nn.Module):
|
24 |
+
def __init__(self, config: T5Config, embed_tokens=None):
|
25 |
+
super().__init__()
|
26 |
+
self.encoder = T5Stack(config, embed_tokens)
|
27 |
+
self.embed_tokens_encoder = torch.nn.Embedding(250002, 4096, padding_idx=1)
|
28 |
+
|
29 |
+
@classmethod
|
30 |
+
def from_pretrained(
|
31 |
+
cls,
|
32 |
+
pretrained_model_name_or_path,
|
33 |
+
subfolder="",
|
34 |
+
embed_tokens=None,
|
35 |
+
emb_name="weights.safetensors",
|
36 |
+
torch_dtype=torch.float16,
|
37 |
+
):
|
38 |
+
cls.dtype = torch_dtype
|
39 |
+
config = T5Stack.config_class.from_pretrained(
|
40 |
+
pretrained_model_name_or_path, subfolder=subfolder
|
41 |
+
)
|
42 |
+
model = cls(config=config, embed_tokens=embed_tokens)
|
43 |
+
model.encoder = T5Stack.from_pretrained(
|
44 |
+
pretrained_model_name_or_path, subfolder=subfolder
|
45 |
+
)
|
46 |
+
embed_tokens_encoder_path = load_file(
|
47 |
+
os.path.join(pretrained_model_name_or_path, subfolder, emb_name)
|
48 |
+
)
|
49 |
+
model.embed_tokens_encoder.load_state_dict(embed_tokens_encoder_path)
|
50 |
+
model.encoder.to(torch_dtype)
|
51 |
+
model.embed_tokens_encoder.to(torch_dtype)
|
52 |
+
return model
|
53 |
+
|
54 |
+
def to(self, *args, **kwargs):
|
55 |
+
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(
|
56 |
+
*args, **kwargs
|
57 |
+
)
|
58 |
+
super(AniMemoryT5, self).to(*args, **kwargs)
|
59 |
+
self.dtype = dtype if dtype is not None else self.dtype
|
60 |
+
self.device = device if device is not None else self.device
|
61 |
+
return self
|
62 |
+
|
63 |
+
def make_attn_mask(self, attn_mask):
|
64 |
+
seq_len = attn_mask.shape[1]
|
65 |
+
query = attn_mask.unsqueeze(1).float()
|
66 |
+
attn_mask = (
|
67 |
+
query.repeat([1, seq_len, 1]).unsqueeze(1).repeat([1, self.num_head, 1, 1])
|
68 |
+
)
|
69 |
+
attn_mask = attn_mask.view([-1, seq_len, seq_len])
|
70 |
+
return attn_mask
|
71 |
+
|
72 |
+
def forward(self, text, attention_mask):
|
73 |
+
embeddings = self.embed_tokens_encoder(text)
|
74 |
+
encoder_outputs = self.encoder(
|
75 |
+
inputs_embeds=embeddings,
|
76 |
+
attention_mask=attention_mask,
|
77 |
+
output_hidden_states=True,
|
78 |
+
)
|
79 |
+
hidden_states = encoder_outputs.hidden_states[-2]
|
80 |
+
hidden_states = self.encoder.final_layer_norm(hidden_states)
|
81 |
+
return hidden_states, hidden_states
|
text_encoder_2/animemory_altclip.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 AniMemory Team and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from safetensors.torch import load_file
|
19 |
+
from transformers import CLIPTextConfig, CLIPTextModelWithProjection
|
20 |
+
|
21 |
+
|
22 |
+
class AniMemoryAltCLip(torch.nn.Module):
|
23 |
+
def __init__(self, config: CLIPTextConfig):
|
24 |
+
super().__init__()
|
25 |
+
self.model_hf = CLIPTextModelWithProjection(config)
|
26 |
+
self.linear_proj = torch.nn.Linear(in_features=1280, out_features=1280)
|
27 |
+
|
28 |
+
@classmethod
|
29 |
+
def from_pretrained(
|
30 |
+
cls,
|
31 |
+
pretrained_model_name_or_path,
|
32 |
+
subfolder="",
|
33 |
+
linear_proj_name="weights.safetensors",
|
34 |
+
torch_dtype=torch.float16,
|
35 |
+
):
|
36 |
+
cls.dtype = torch_dtype
|
37 |
+
config = CLIPTextModelWithProjection.config_class.from_pretrained(
|
38 |
+
pretrained_model_name_or_path, subfolder=subfolder
|
39 |
+
)
|
40 |
+
model = cls(config=config)
|
41 |
+
model.model_hf = CLIPTextModelWithProjection.from_pretrained(
|
42 |
+
pretrained_model_name_or_path, subfolder=subfolder
|
43 |
+
)
|
44 |
+
linear_proj_state = load_file(
|
45 |
+
os.path.join(pretrained_model_name_or_path, subfolder, linear_proj_name)
|
46 |
+
)
|
47 |
+
model.linear_proj.load_state_dict(linear_proj_state)
|
48 |
+
return model
|
49 |
+
|
50 |
+
def to(self, *args, **kwargs):
|
51 |
+
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(
|
52 |
+
*args, **kwargs
|
53 |
+
)
|
54 |
+
super(AniMemoryAltCLip, self).to(*args, **kwargs)
|
55 |
+
self.dtype = dtype if dtype is not None else self.dtype
|
56 |
+
self.device = device if device is not None else self.device
|
57 |
+
return self
|
58 |
+
|
59 |
+
def expand_mask(self, mask=None, dtype="", tgt_len=None):
|
60 |
+
"""
|
61 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
62 |
+
"""
|
63 |
+
bsz, src_len = mask.size()
|
64 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
65 |
+
|
66 |
+
expanded_mask = (
|
67 |
+
mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
68 |
+
)
|
69 |
+
|
70 |
+
inverted_mask = 1.0 - expanded_mask
|
71 |
+
|
72 |
+
return inverted_mask.masked_fill(
|
73 |
+
inverted_mask.to(torch.bool), torch.finfo(dtype).min
|
74 |
+
)
|
75 |
+
|
76 |
+
def make_attn_mask(self, attn_mask):
|
77 |
+
seq_len = attn_mask.shape[1]
|
78 |
+
query = attn_mask.unsqueeze(1).float()
|
79 |
+
attn_mask = (
|
80 |
+
query.repeat([1, seq_len, 1]).unsqueeze(1).repeat([1, self.num_head, 1, 1])
|
81 |
+
)
|
82 |
+
attn_mask = attn_mask.view([-1, seq_len, seq_len])
|
83 |
+
return attn_mask
|
84 |
+
|
85 |
+
def gradient_checkpointing_enable(
|
86 |
+
self,
|
87 |
+
):
|
88 |
+
self.model_hf.gradient_checkpointing_enable()
|
89 |
+
|
90 |
+
def forward(self, text, attention_mask):
|
91 |
+
hidden_states = self.model_hf.text_model.embeddings(
|
92 |
+
input_ids=text, position_ids=None
|
93 |
+
)
|
94 |
+
if attention_mask is None:
|
95 |
+
print("Warning: attention_mask is None in altclip!")
|
96 |
+
new_attn_mask = (
|
97 |
+
self.expand_mask(attention_mask, hidden_states.dtype)
|
98 |
+
if attention_mask is not None
|
99 |
+
else None
|
100 |
+
)
|
101 |
+
encoder_outputs = self.model_hf.text_model.encoder(
|
102 |
+
inputs_embeds=hidden_states,
|
103 |
+
attention_mask=new_attn_mask,
|
104 |
+
causal_attention_mask=None,
|
105 |
+
output_attentions=False,
|
106 |
+
output_hidden_states=True,
|
107 |
+
return_dict=True,
|
108 |
+
)
|
109 |
+
last_hidden_state = encoder_outputs[0]
|
110 |
+
last_hidden_state = self.model_hf.text_model.final_layer_norm(last_hidden_state)
|
111 |
+
last_hidden_state = (
|
112 |
+
last_hidden_state[torch.arange(last_hidden_state.shape[0]), 0]
|
113 |
+
@ self.model_hf.text_projection.weight
|
114 |
+
)
|
115 |
+
pooled_output = self.linear_proj(last_hidden_state)
|
116 |
+
|
117 |
+
extra_features = encoder_outputs.hidden_states[-2]
|
118 |
+
extra_features = self.model_hf.text_model.final_layer_norm(extra_features)
|
119 |
+
return extra_features, pooled_output
|
vae/modeling_movq.py
ADDED
@@ -0,0 +1,539 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Kandinsky 3.0 Model Team, AniMemory Team and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import json
|
16 |
+
import os
|
17 |
+
from types import SimpleNamespace
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
from packaging import version
|
22 |
+
from safetensors.torch import load_file
|
23 |
+
|
24 |
+
from diffusers.utils.accelerate_utils import apply_forward_hook
|
25 |
+
|
26 |
+
|
27 |
+
def nonlinearity(x):
|
28 |
+
return x * torch.sigmoid(x)
|
29 |
+
|
30 |
+
|
31 |
+
class SpatialNorm(nn.Module):
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
f_channels,
|
35 |
+
zq_channels=None,
|
36 |
+
norm_layer=nn.GroupNorm,
|
37 |
+
freeze_norm_layer=False,
|
38 |
+
add_conv=False,
|
39 |
+
**norm_layer_params,
|
40 |
+
):
|
41 |
+
super().__init__()
|
42 |
+
self.norm_layer = norm_layer(num_channels=f_channels, **norm_layer_params)
|
43 |
+
if zq_channels is not None:
|
44 |
+
if freeze_norm_layer:
|
45 |
+
for p in self.norm_layer.parameters:
|
46 |
+
p.requires_grad = False
|
47 |
+
self.add_conv = add_conv
|
48 |
+
if self.add_conv:
|
49 |
+
self.conv = nn.Conv2d(
|
50 |
+
zq_channels, zq_channels, kernel_size=3, stride=1, padding=1
|
51 |
+
)
|
52 |
+
self.conv_y = nn.Conv2d(
|
53 |
+
zq_channels, f_channels, kernel_size=1, stride=1, padding=0
|
54 |
+
)
|
55 |
+
self.conv_b = nn.Conv2d(
|
56 |
+
zq_channels, f_channels, kernel_size=1, stride=1, padding=0
|
57 |
+
)
|
58 |
+
|
59 |
+
def forward(self, f, zq=None):
|
60 |
+
norm_f = self.norm_layer(f)
|
61 |
+
if zq is not None:
|
62 |
+
f_size = f.shape[-2:]
|
63 |
+
if (
|
64 |
+
version.parse(torch.__version__) < version.parse("2.1")
|
65 |
+
and zq.dtype == torch.bfloat16
|
66 |
+
):
|
67 |
+
zq = zq.to(dtype=torch.float32)
|
68 |
+
zq = torch.nn.functional.interpolate(zq, size=f_size, mode="nearest")
|
69 |
+
zq = zq.to(dtype=torch.bfloat16)
|
70 |
+
else:
|
71 |
+
zq = torch.nn.functional.interpolate(zq, size=f_size, mode="nearest")
|
72 |
+
if self.add_conv:
|
73 |
+
zq = self.conv(zq)
|
74 |
+
norm_f = norm_f * self.conv_y(zq) + self.conv_b(zq)
|
75 |
+
return norm_f
|
76 |
+
|
77 |
+
|
78 |
+
def Normalize(in_channels, zq_ch=None, add_conv=None):
|
79 |
+
return SpatialNorm(
|
80 |
+
in_channels,
|
81 |
+
zq_ch,
|
82 |
+
norm_layer=nn.GroupNorm,
|
83 |
+
freeze_norm_layer=False,
|
84 |
+
add_conv=add_conv,
|
85 |
+
num_groups=32,
|
86 |
+
eps=1e-6,
|
87 |
+
affine=True,
|
88 |
+
)
|
89 |
+
|
90 |
+
|
91 |
+
class Upsample(nn.Module):
|
92 |
+
def __init__(self, in_channels, with_conv):
|
93 |
+
super().__init__()
|
94 |
+
self.with_conv = with_conv
|
95 |
+
if self.with_conv:
|
96 |
+
self.conv = torch.nn.Conv2d(
|
97 |
+
in_channels, in_channels, kernel_size=3, stride=1, padding=1
|
98 |
+
)
|
99 |
+
|
100 |
+
def forward(self, x):
|
101 |
+
if (
|
102 |
+
version.parse(torch.__version__) < version.parse("2.1")
|
103 |
+
and x.dtype == torch.bfloat16
|
104 |
+
):
|
105 |
+
x = x.to(dtype=torch.float32)
|
106 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
107 |
+
x = x.to(dtype=torch.bfloat16)
|
108 |
+
else:
|
109 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
110 |
+
if self.with_conv:
|
111 |
+
x = self.conv(x)
|
112 |
+
return x
|
113 |
+
|
114 |
+
|
115 |
+
class Downsample(nn.Module):
|
116 |
+
def __init__(self, in_channels, with_conv):
|
117 |
+
super().__init__()
|
118 |
+
self.with_conv = with_conv
|
119 |
+
if self.with_conv:
|
120 |
+
self.conv = torch.nn.Conv2d(
|
121 |
+
in_channels, in_channels, kernel_size=3, stride=2, padding=0
|
122 |
+
)
|
123 |
+
|
124 |
+
def forward(self, x):
|
125 |
+
if self.with_conv:
|
126 |
+
pad = (0, 1, 0, 1)
|
127 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
128 |
+
x = self.conv(x)
|
129 |
+
else:
|
130 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
131 |
+
return x
|
132 |
+
|
133 |
+
|
134 |
+
class ResnetBlock(nn.Module):
|
135 |
+
def __init__(
|
136 |
+
self,
|
137 |
+
*,
|
138 |
+
in_channels,
|
139 |
+
out_channels=None,
|
140 |
+
conv_shortcut=False,
|
141 |
+
dropout,
|
142 |
+
temb_channels=512,
|
143 |
+
zq_ch=None,
|
144 |
+
add_conv=False,
|
145 |
+
):
|
146 |
+
super().__init__()
|
147 |
+
self.in_channels = in_channels
|
148 |
+
out_channels = in_channels if out_channels is None else out_channels
|
149 |
+
self.out_channels = out_channels
|
150 |
+
self.use_conv_shortcut = conv_shortcut
|
151 |
+
|
152 |
+
self.norm1 = Normalize(in_channels, zq_ch, add_conv=add_conv)
|
153 |
+
self.conv1 = torch.nn.Conv2d(
|
154 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
155 |
+
)
|
156 |
+
if temb_channels > 0:
|
157 |
+
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
|
158 |
+
self.norm2 = Normalize(out_channels, zq_ch, add_conv=add_conv)
|
159 |
+
self.dropout = torch.nn.Dropout(dropout)
|
160 |
+
self.conv2 = torch.nn.Conv2d(
|
161 |
+
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
162 |
+
)
|
163 |
+
if self.in_channels != self.out_channels:
|
164 |
+
if self.use_conv_shortcut:
|
165 |
+
self.conv_shortcut = torch.nn.Conv2d(
|
166 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
167 |
+
)
|
168 |
+
else:
|
169 |
+
self.nin_shortcut = torch.nn.Conv2d(
|
170 |
+
in_channels, out_channels, kernel_size=1, stride=1, padding=0
|
171 |
+
)
|
172 |
+
|
173 |
+
def forward(self, x, temb, zq=None):
|
174 |
+
h = x
|
175 |
+
h = self.norm1(h, zq)
|
176 |
+
h = nonlinearity(h)
|
177 |
+
h = self.conv1(h)
|
178 |
+
|
179 |
+
if temb is not None:
|
180 |
+
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
|
181 |
+
|
182 |
+
h = self.norm2(h, zq)
|
183 |
+
h = nonlinearity(h)
|
184 |
+
h = self.dropout(h)
|
185 |
+
h = self.conv2(h)
|
186 |
+
|
187 |
+
if self.in_channels != self.out_channels:
|
188 |
+
if self.use_conv_shortcut:
|
189 |
+
x = self.conv_shortcut(x)
|
190 |
+
else:
|
191 |
+
x = self.nin_shortcut(x)
|
192 |
+
|
193 |
+
return x + h
|
194 |
+
|
195 |
+
|
196 |
+
class AttnBlock(nn.Module):
|
197 |
+
def __init__(self, in_channels, zq_ch=None, add_conv=False):
|
198 |
+
super().__init__()
|
199 |
+
self.in_channels = in_channels
|
200 |
+
|
201 |
+
self.norm = Normalize(in_channels, zq_ch, add_conv=add_conv)
|
202 |
+
self.q = torch.nn.Conv2d(
|
203 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
204 |
+
)
|
205 |
+
self.k = torch.nn.Conv2d(
|
206 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
207 |
+
)
|
208 |
+
self.v = torch.nn.Conv2d(
|
209 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
210 |
+
)
|
211 |
+
self.proj_out = torch.nn.Conv2d(
|
212 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
213 |
+
)
|
214 |
+
|
215 |
+
def forward(self, x, zq=None):
|
216 |
+
h_ = x
|
217 |
+
h_ = self.norm(h_, zq)
|
218 |
+
q = self.q(h_)
|
219 |
+
k = self.k(h_)
|
220 |
+
v = self.v(h_)
|
221 |
+
|
222 |
+
# compute attention
|
223 |
+
b, c, h, w = q.shape
|
224 |
+
q = q.reshape(b, c, h * w)
|
225 |
+
q = q.permute(0, 2, 1)
|
226 |
+
k = k.reshape(b, c, h * w)
|
227 |
+
w_ = torch.bmm(q, k)
|
228 |
+
w_ = w_ * (int(c) ** (-0.5))
|
229 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
230 |
+
|
231 |
+
# attend to values
|
232 |
+
v = v.reshape(b, c, h * w)
|
233 |
+
w_ = w_.permute(0, 2, 1)
|
234 |
+
h_ = torch.bmm(v, w_)
|
235 |
+
h_ = h_.reshape(b, c, h, w)
|
236 |
+
|
237 |
+
h_ = self.proj_out(h_)
|
238 |
+
|
239 |
+
return x + h_
|
240 |
+
|
241 |
+
|
242 |
+
class Encoder(nn.Module):
|
243 |
+
def __init__(
|
244 |
+
self,
|
245 |
+
*,
|
246 |
+
ch,
|
247 |
+
out_ch,
|
248 |
+
ch_mult=(1, 2, 4, 8),
|
249 |
+
num_res_blocks,
|
250 |
+
attn_resolutions,
|
251 |
+
dropout=0.0,
|
252 |
+
resamp_with_conv=True,
|
253 |
+
in_channels,
|
254 |
+
resolution,
|
255 |
+
z_channels,
|
256 |
+
double_z=True,
|
257 |
+
**ignore_kwargs,
|
258 |
+
):
|
259 |
+
super().__init__()
|
260 |
+
self.ch = ch
|
261 |
+
self.temb_ch = 0
|
262 |
+
self.num_resolutions = len(ch_mult)
|
263 |
+
self.num_res_blocks = num_res_blocks
|
264 |
+
self.resolution = resolution
|
265 |
+
self.in_channels = in_channels
|
266 |
+
|
267 |
+
# downsampling
|
268 |
+
self.conv_in = torch.nn.Conv2d(
|
269 |
+
in_channels, self.ch, kernel_size=3, stride=1, padding=1
|
270 |
+
)
|
271 |
+
|
272 |
+
curr_res = resolution
|
273 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
274 |
+
self.down = nn.ModuleList()
|
275 |
+
for i_level in range(self.num_resolutions):
|
276 |
+
block = nn.ModuleList()
|
277 |
+
attn = nn.ModuleList()
|
278 |
+
block_in = ch * in_ch_mult[i_level]
|
279 |
+
block_out = ch * ch_mult[i_level]
|
280 |
+
for i_block in range(self.num_res_blocks):
|
281 |
+
block.append(
|
282 |
+
ResnetBlock(
|
283 |
+
in_channels=block_in,
|
284 |
+
out_channels=block_out,
|
285 |
+
temb_channels=self.temb_ch,
|
286 |
+
dropout=dropout,
|
287 |
+
)
|
288 |
+
)
|
289 |
+
block_in = block_out
|
290 |
+
if curr_res in attn_resolutions:
|
291 |
+
attn.append(AttnBlock(block_in))
|
292 |
+
down = nn.Module()
|
293 |
+
down.block = block
|
294 |
+
down.attn = attn
|
295 |
+
if i_level != self.num_resolutions - 1:
|
296 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
297 |
+
curr_res = curr_res // 2
|
298 |
+
self.down.append(down)
|
299 |
+
|
300 |
+
# middle
|
301 |
+
self.mid = nn.Module()
|
302 |
+
self.mid.block_1 = ResnetBlock(
|
303 |
+
in_channels=block_in,
|
304 |
+
out_channels=block_in,
|
305 |
+
temb_channels=self.temb_ch,
|
306 |
+
dropout=dropout,
|
307 |
+
)
|
308 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
309 |
+
self.mid.block_2 = ResnetBlock(
|
310 |
+
in_channels=block_in,
|
311 |
+
out_channels=block_in,
|
312 |
+
temb_channels=self.temb_ch,
|
313 |
+
dropout=dropout,
|
314 |
+
)
|
315 |
+
|
316 |
+
# end
|
317 |
+
self.norm_out = Normalize(block_in)
|
318 |
+
self.conv_out = torch.nn.Conv2d(
|
319 |
+
block_in,
|
320 |
+
2 * z_channels if double_z else z_channels,
|
321 |
+
kernel_size=3,
|
322 |
+
stride=1,
|
323 |
+
padding=1,
|
324 |
+
)
|
325 |
+
|
326 |
+
def forward(self, x):
|
327 |
+
temb = None
|
328 |
+
|
329 |
+
# downsampling
|
330 |
+
hs = [self.conv_in(x)]
|
331 |
+
for i_level in range(self.num_resolutions):
|
332 |
+
for i_block in range(self.num_res_blocks):
|
333 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
334 |
+
if len(self.down[i_level].attn) > 0:
|
335 |
+
h = self.down[i_level].attn[i_block](h)
|
336 |
+
hs.append(h)
|
337 |
+
if i_level != self.num_resolutions - 1:
|
338 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
339 |
+
|
340 |
+
# middle
|
341 |
+
h = hs[-1]
|
342 |
+
h = self.mid.block_1(h, temb)
|
343 |
+
h = self.mid.attn_1(h)
|
344 |
+
h = self.mid.block_2(h, temb)
|
345 |
+
|
346 |
+
# end
|
347 |
+
h = self.norm_out(h)
|
348 |
+
h = nonlinearity(h)
|
349 |
+
h = self.conv_out(h)
|
350 |
+
return h
|
351 |
+
|
352 |
+
|
353 |
+
class Decoder(nn.Module):
|
354 |
+
def __init__(
|
355 |
+
self,
|
356 |
+
*,
|
357 |
+
ch,
|
358 |
+
out_ch,
|
359 |
+
ch_mult=(1, 2, 4, 8),
|
360 |
+
num_res_blocks,
|
361 |
+
attn_resolutions,
|
362 |
+
dropout=0.0,
|
363 |
+
resamp_with_conv=True,
|
364 |
+
in_channels,
|
365 |
+
resolution,
|
366 |
+
z_channels,
|
367 |
+
give_pre_end=False,
|
368 |
+
zq_ch=None,
|
369 |
+
add_conv=False,
|
370 |
+
**ignorekwargs,
|
371 |
+
):
|
372 |
+
super().__init__()
|
373 |
+
self.ch = ch
|
374 |
+
self.temb_ch = 0
|
375 |
+
self.num_resolutions = len(ch_mult)
|
376 |
+
self.num_res_blocks = num_res_blocks
|
377 |
+
self.resolution = resolution
|
378 |
+
self.in_channels = in_channels
|
379 |
+
self.give_pre_end = give_pre_end
|
380 |
+
|
381 |
+
block_in = ch * ch_mult[self.num_resolutions - 1]
|
382 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
383 |
+
self.z_shape = (1, z_channels, curr_res, curr_res)
|
384 |
+
|
385 |
+
# z to block_in
|
386 |
+
self.conv_in = torch.nn.Conv2d(
|
387 |
+
z_channels, block_in, kernel_size=3, stride=1, padding=1
|
388 |
+
)
|
389 |
+
|
390 |
+
# middle
|
391 |
+
self.mid = nn.Module()
|
392 |
+
self.mid.block_1 = ResnetBlock(
|
393 |
+
in_channels=block_in,
|
394 |
+
out_channels=block_in,
|
395 |
+
temb_channels=self.temb_ch,
|
396 |
+
dropout=dropout,
|
397 |
+
zq_ch=zq_ch,
|
398 |
+
add_conv=add_conv,
|
399 |
+
)
|
400 |
+
self.mid.attn_1 = AttnBlock(block_in, zq_ch, add_conv=add_conv)
|
401 |
+
self.mid.block_2 = ResnetBlock(
|
402 |
+
in_channels=block_in,
|
403 |
+
out_channels=block_in,
|
404 |
+
temb_channels=self.temb_ch,
|
405 |
+
dropout=dropout,
|
406 |
+
zq_ch=zq_ch,
|
407 |
+
add_conv=add_conv,
|
408 |
+
)
|
409 |
+
|
410 |
+
# upsampling
|
411 |
+
self.up = nn.ModuleList()
|
412 |
+
for i_level in reversed(range(self.num_resolutions)):
|
413 |
+
block = nn.ModuleList()
|
414 |
+
attn = nn.ModuleList()
|
415 |
+
block_out = ch * ch_mult[i_level]
|
416 |
+
for _ in range(self.num_res_blocks + 1):
|
417 |
+
block.append(
|
418 |
+
ResnetBlock(
|
419 |
+
in_channels=block_in,
|
420 |
+
out_channels=block_out,
|
421 |
+
temb_channels=self.temb_ch,
|
422 |
+
dropout=dropout,
|
423 |
+
zq_ch=zq_ch,
|
424 |
+
add_conv=add_conv,
|
425 |
+
)
|
426 |
+
)
|
427 |
+
block_in = block_out
|
428 |
+
if curr_res in attn_resolutions:
|
429 |
+
attn.append(AttnBlock(block_in, zq_ch, add_conv=add_conv))
|
430 |
+
up = nn.Module()
|
431 |
+
up.block = block
|
432 |
+
up.attn = attn
|
433 |
+
if i_level != 0:
|
434 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
435 |
+
curr_res = curr_res * 2
|
436 |
+
self.up.insert(0, up)
|
437 |
+
|
438 |
+
# end
|
439 |
+
self.norm_out = Normalize(block_in, zq_ch, add_conv=add_conv)
|
440 |
+
self.conv_out = torch.nn.Conv2d(
|
441 |
+
block_in, out_ch, kernel_size=3, stride=1, padding=1
|
442 |
+
)
|
443 |
+
|
444 |
+
def forward(self, z, zq):
|
445 |
+
self.last_z_shape = z.shape
|
446 |
+
temb = None
|
447 |
+
|
448 |
+
h = self.conv_in(z)
|
449 |
+
|
450 |
+
# middle
|
451 |
+
h = self.mid.block_1(h, temb, zq)
|
452 |
+
h = self.mid.attn_1(h, zq)
|
453 |
+
h = self.mid.block_2(h, temb, zq)
|
454 |
+
|
455 |
+
# upsampling
|
456 |
+
for i_level in reversed(range(self.num_resolutions)):
|
457 |
+
for i_block in range(self.num_res_blocks + 1):
|
458 |
+
h = self.up[i_level].block[i_block](h, temb, zq)
|
459 |
+
if len(self.up[i_level].attn) > 0:
|
460 |
+
h = self.up[i_level].attn[i_block](h, zq)
|
461 |
+
if i_level != 0:
|
462 |
+
h = self.up[i_level].upsample(h)
|
463 |
+
|
464 |
+
# end
|
465 |
+
if self.give_pre_end:
|
466 |
+
return h
|
467 |
+
|
468 |
+
h = self.norm_out(h, zq)
|
469 |
+
h = nonlinearity(h)
|
470 |
+
h = self.conv_out(h)
|
471 |
+
return h
|
472 |
+
|
473 |
+
|
474 |
+
# Modified from MoVQ in https://github.com/ai-forever/Kandinsky-3/blob/main/kandinsky3/movq.py
|
475 |
+
class MoVQ(nn.Module):
|
476 |
+
def __init__(self, generator_params: dict):
|
477 |
+
super().__init__()
|
478 |
+
z_channels = generator_params["z_channels"]
|
479 |
+
self.config = SimpleNamespace(**generator_params)
|
480 |
+
self.encoder = Encoder(**generator_params)
|
481 |
+
self.quant_conv = torch.nn.Conv2d(z_channels, z_channels, 1)
|
482 |
+
self.post_quant_conv = torch.nn.Conv2d(z_channels, z_channels, 1)
|
483 |
+
self.decoder = Decoder(zq_ch=z_channels, **generator_params)
|
484 |
+
self.dtype = None
|
485 |
+
self.device = None
|
486 |
+
|
487 |
+
@staticmethod
|
488 |
+
def get_model_config(pretrained_model_name_or_path, subfolder):
|
489 |
+
config_path = os.path.join(
|
490 |
+
pretrained_model_name_or_path, subfolder, "config.json"
|
491 |
+
)
|
492 |
+
assert os.path.exists(config_path), "config file not exists."
|
493 |
+
with open(config_path, "r") as f:
|
494 |
+
config = json.loads(f.read())
|
495 |
+
return config
|
496 |
+
|
497 |
+
@classmethod
|
498 |
+
def from_pretrained(
|
499 |
+
cls,
|
500 |
+
pretrained_model_name_or_path,
|
501 |
+
subfolder="",
|
502 |
+
torch_dtype=torch.float32,
|
503 |
+
):
|
504 |
+
config = cls.get_model_config(pretrained_model_name_or_path, subfolder)
|
505 |
+
model = cls(generator_params=config)
|
506 |
+
ckpt_path = os.path.join(
|
507 |
+
pretrained_model_name_or_path, subfolder, "movq_model.safetensors"
|
508 |
+
)
|
509 |
+
assert os.path.exists(
|
510 |
+
ckpt_path
|
511 |
+
), f"ckpt path not exists, please check {ckpt_path}"
|
512 |
+
assert torch_dtype != torch.float16, "torch_dtype doesn't support fp16"
|
513 |
+
ckpt_weight = load_file(ckpt_path)
|
514 |
+
model.load_state_dict(ckpt_weight, strict=True)
|
515 |
+
model.to(dtype=torch_dtype)
|
516 |
+
return model
|
517 |
+
|
518 |
+
def to(self, *args, **kwargs):
|
519 |
+
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(
|
520 |
+
*args, **kwargs
|
521 |
+
)
|
522 |
+
super(MoVQ, self).to(*args, **kwargs)
|
523 |
+
self.dtype = dtype if dtype is not None else self.dtype
|
524 |
+
self.device = device if device is not None else self.device
|
525 |
+
return self
|
526 |
+
|
527 |
+
@torch.no_grad()
|
528 |
+
@apply_forward_hook
|
529 |
+
def encode(self, x):
|
530 |
+
h = self.encoder(x)
|
531 |
+
h = self.quant_conv(h)
|
532 |
+
return h
|
533 |
+
|
534 |
+
@torch.no_grad()
|
535 |
+
@apply_forward_hook
|
536 |
+
def decode(self, quant):
|
537 |
+
decoder_input = self.post_quant_conv(quant)
|
538 |
+
decoded = self.decoder(decoder_input, quant)
|
539 |
+
return decoded
|