Add custom pipeline
#1
by
alinoc
- opened
- pipeline.py +43 -0
- requirements.txt +6 -0
- translation.py +93 -0
pipeline.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Any
|
2 |
+
from transformers import AutoModelForSeq2SeqLM, NllbTokenizer
|
3 |
+
from translation import fix_tokenizer, TextPreprocessor, sentenize_with_fillers
|
4 |
+
from sentence_splitter import SentenceSplitter
|
5 |
+
import torch
|
6 |
+
|
7 |
+
class PreTrainedPipeline():
|
8 |
+
def __init__(self, path=""):
|
9 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(path)
|
10 |
+
if torch.cuda.is_available():
|
11 |
+
self.model = self.model.cuda()
|
12 |
+
self.tokenizer = NllbTokenizer.from_pretrained(path)
|
13 |
+
fix_tokenizer(self.tokenizer)
|
14 |
+
self.splitter = SentenceSplitter(language='es')
|
15 |
+
self.preprocessor = TextPreprocessor()
|
16 |
+
|
17 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
18 |
+
inputs = data.get("text", "")
|
19 |
+
src_lang = data.get("src_lang", "spa_Latn")
|
20 |
+
tgt_lang = data.get("tgt_lang", "agr_Latn")
|
21 |
+
preprocess = data.get("preprocess", True)
|
22 |
+
|
23 |
+
sentences, fillers = sentenize_with_fillers(inputs, self.splitter)
|
24 |
+
if preprocess:
|
25 |
+
sentences = [self.preprocessor(sent) for sent in sentences]
|
26 |
+
|
27 |
+
translated_sentences = []
|
28 |
+
for sentence in sentences:
|
29 |
+
self.tokenizer.src_lang = src_lang
|
30 |
+
encoded = self.tokenizer(sentence, return_tensors="pt")
|
31 |
+
generated_tokens = self.model.generate(
|
32 |
+
**encoded.to(self.model.device),
|
33 |
+
forced_bos_token_id=self.tokenizer.lang_code_to_id[tgt_lang]
|
34 |
+
)
|
35 |
+
translated_sentences.append(
|
36 |
+
self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
37 |
+
)
|
38 |
+
|
39 |
+
output = "".join(
|
40 |
+
filler + sentence for filler, sentence in zip(fillers, translated_sentences)
|
41 |
+
) + fillers[-1]
|
42 |
+
|
43 |
+
return {"translation": output}
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
requests==2.27.*
|
2 |
+
sentencepiece==0.1.*
|
3 |
+
torch==1.11.*
|
4 |
+
transformers==4.33.*
|
5 |
+
sentence-splitter==1.4
|
6 |
+
sacremoses== 0.0.45
|
translation.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import sys
|
3 |
+
import typing as tp
|
4 |
+
import unicodedata
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from sacremoses import MosesPunctNormalizer
|
8 |
+
from sentence_splitter import SentenceSplitter
|
9 |
+
from transformers import AutoModelForSeq2SeqLM, NllbTokenizer
|
10 |
+
|
11 |
+
L1 = "spa_Latn"
|
12 |
+
L2 = "agr_Latn"
|
13 |
+
LANGUAGES = {
|
14 |
+
"Spanish | spa": L1,
|
15 |
+
"Awajun | agr": L2,
|
16 |
+
}
|
17 |
+
|
18 |
+
def get_non_printing_char_replacer(replace_by: str = " ") -> tp.Callable[[str], str]:
|
19 |
+
non_printable_map = {
|
20 |
+
ord(c): replace_by
|
21 |
+
for c in (chr(i) for i in range(sys.maxunicode + 1))
|
22 |
+
# same as \p{C} in perl
|
23 |
+
# see https://www.unicode.org/reports/tr44/#General_Category_Values
|
24 |
+
if unicodedata.category(c) in {"C", "Cc", "Cf", "Cs", "Co", "Cn"}
|
25 |
+
}
|
26 |
+
|
27 |
+
def replace_non_printing_char(line) -> str:
|
28 |
+
return line.translate(non_printable_map)
|
29 |
+
|
30 |
+
return replace_non_printing_char
|
31 |
+
|
32 |
+
class TextPreprocessor:
|
33 |
+
"""
|
34 |
+
Mimic the text preprocessing made for the NLLB model.
|
35 |
+
This code is adapted from the Stopes repo of the NLLB team:
|
36 |
+
https://github.com/facebookresearch/stopes/blob/main/stopes/pipelines/monolingual/monolingual_line_processor.py#L214
|
37 |
+
"""
|
38 |
+
|
39 |
+
def __init__(self, lang="en"):
|
40 |
+
self.mpn = MosesPunctNormalizer(lang=lang)
|
41 |
+
self.mpn.substitutions = [
|
42 |
+
(re.compile(r), sub) for r, sub in self.mpn.substitutions
|
43 |
+
]
|
44 |
+
self.replace_nonprint = get_non_printing_char_replacer(" ")
|
45 |
+
|
46 |
+
def __call__(self, text: str) -> str:
|
47 |
+
clean = self.mpn.normalize(text)
|
48 |
+
clean = self.replace_nonprint(clean)
|
49 |
+
# replace ππ―ππ«π π’π°π π by Francesca
|
50 |
+
clean = unicodedata.normalize("NFKC", clean)
|
51 |
+
return clean
|
52 |
+
|
53 |
+
def fix_tokenizer(tokenizer, new_lang=L2):
|
54 |
+
"""Add a new language token to the tokenizer vocabulary
|
55 |
+
(this should be done each time after its initialization)
|
56 |
+
"""
|
57 |
+
old_len = len(tokenizer) - int(new_lang in tokenizer.added_tokens_encoder)
|
58 |
+
tokenizer.lang_code_to_id[new_lang] = old_len - 1
|
59 |
+
tokenizer.id_to_lang_code[old_len - 1] = new_lang
|
60 |
+
# always move "mask" to the last position
|
61 |
+
tokenizer.fairseq_tokens_to_ids["<mask>"] = (
|
62 |
+
len(tokenizer.sp_model)
|
63 |
+
+ len(tokenizer.lang_code_to_id)
|
64 |
+
+ tokenizer.fairseq_offset
|
65 |
+
)
|
66 |
+
|
67 |
+
tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id)
|
68 |
+
tokenizer.fairseq_ids_to_tokens = {
|
69 |
+
v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()
|
70 |
+
}
|
71 |
+
if new_lang not in tokenizer._additional_special_tokens:
|
72 |
+
tokenizer._additional_special_tokens.append(new_lang)
|
73 |
+
# clear the added token encoder; otherwise a new token may end up there by mistake
|
74 |
+
tokenizer.added_tokens_encoder = {}
|
75 |
+
tokenizer.added_tokens_decoder = {}
|
76 |
+
|
77 |
+
def sentenize_with_fillers(text, splitter, fix_double_space=True, ignore_errors=False):
|
78 |
+
"""Apply a sentence splitter and return the sentences and all separators before and after them"""
|
79 |
+
if fix_double_space:
|
80 |
+
text = re.sub(" +", " ", text)
|
81 |
+
sentences = splitter.split(text)
|
82 |
+
fillers = []
|
83 |
+
i = 0
|
84 |
+
for sentence in sentences:
|
85 |
+
start_idx = text.find(sentence, i)
|
86 |
+
if ignore_errors and start_idx == -1:
|
87 |
+
# print(f"sent not found after {i}: `{sentence}`")
|
88 |
+
start_idx = i + 1
|
89 |
+
assert start_idx != -1, f"sent not found after {i}: `{sentence}`"
|
90 |
+
fillers.append(text[i:start_idx])
|
91 |
+
i = start_idx + len(sentence)
|
92 |
+
fillers.append(text[i:])
|
93 |
+
return sentences, fillers
|