test_model
This model is a fine-tuned version of distilbert/distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2975
- Accuracy: 0.9453
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 16
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 46 | 0.3305 | 0.9196 |
No log | 2.0 | 92 | 0.2336 | 0.9164 |
No log | 3.0 | 138 | 0.1981 | 0.9421 |
No log | 4.0 | 184 | 0.1994 | 0.9421 |
No log | 5.0 | 230 | 0.2091 | 0.9421 |
No log | 6.0 | 276 | 0.2382 | 0.9453 |
No log | 7.0 | 322 | 0.2608 | 0.9453 |
No log | 8.0 | 368 | 0.2621 | 0.9453 |
No log | 9.0 | 414 | 0.2757 | 0.9486 |
No log | 10.0 | 460 | 0.2999 | 0.9486 |
0.1173 | 11.0 | 506 | 0.2928 | 0.9486 |
0.1173 | 12.0 | 552 | 0.2863 | 0.9421 |
0.1173 | 13.0 | 598 | 0.2875 | 0.9453 |
0.1173 | 14.0 | 644 | 0.2922 | 0.9453 |
0.1173 | 15.0 | 690 | 0.2966 | 0.9453 |
0.1173 | 16.0 | 736 | 0.2975 | 0.9453 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 12
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for andreyunic23/test_model
Base model
distilbert/distilbert-base-uncased