test_model

This model is a fine-tuned version of distilbert/distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2975
  • Accuracy: 0.9453

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 46 0.3305 0.9196
No log 2.0 92 0.2336 0.9164
No log 3.0 138 0.1981 0.9421
No log 4.0 184 0.1994 0.9421
No log 5.0 230 0.2091 0.9421
No log 6.0 276 0.2382 0.9453
No log 7.0 322 0.2608 0.9453
No log 8.0 368 0.2621 0.9453
No log 9.0 414 0.2757 0.9486
No log 10.0 460 0.2999 0.9486
0.1173 11.0 506 0.2928 0.9486
0.1173 12.0 552 0.2863 0.9421
0.1173 13.0 598 0.2875 0.9453
0.1173 14.0 644 0.2922 0.9453
0.1173 15.0 690 0.2966 0.9453
0.1173 16.0 736 0.2975 0.9453

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
12
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for andreyunic23/test_model

Finetuned
(7967)
this model