File size: 13,450 Bytes
92d683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# Copyright (c) Together
# This software is distributed under the terms of the Apache License, Version 2.0
# Author: Michael Poli

import gc

import torch
import torch.nn as nn
import torch.nn.functional as F

try:
    import conv1d_cpp
except:
    pass
from .utils import column_split

IIR_PREFILL_MODES = [
    "recurrence",
    "modal-fft",
    "hybrid-modal-recurrence",
    "modal-scan",
    "canonical-fft",
    "iir-fir-caching",
]


def canonicalize_modal_system(poles, residues):
    """Canonicalize a modal system.

    Args:
        poles (Tensor): The poles of the system.
        residues (Tensor): The residues of the system.

    Returns:
        Tuple[Tensor, Tensor]: The canonicalized poles and residues.
    """
    raise NotImplementedError


def list_tensors(idx):
    for obj in gc.get_objects():
        try:
            if torch.is_tensor(obj) and isinstance(obj, torch.Tensor):
                # dump to log
                print(type(obj), obj.size())
                el = obj[0]
                with open(f"tensors_{idx}.txt", "a") as f:
                    f.write(f"{type(obj)} {obj.size()} {el}\n")
        except Exception as e:
            pass


class HyenaInferenceEngine:
    def __init__(
        self,
        fir_fn=None,
        iir_prefill_style="modal-fft",
        layer_idx=None,
    ) -> None:
        self.fir_fn = fir_fn
        assert iir_prefill_style in IIR_PREFILL_MODES, f"iir_prefill_style must be one of {IIR_PREFILL_MODES}"
        self.iir_prefill_style = iir_prefill_style
        self.layer_idx = layer_idx
        self.low_mem_mode = False

    def parallel_fir(
        self,
        fir_fn,
        u,
        weight,
        bias,
        L,
        fir_length=3,
        inference_params=None,
        prefill_mode=None,
        padding_mask=None,
    ):
        """Compute the output state of the long convolutional filter."""
        # prepare input layout, dimensions and dispatch to fir kernel
        if fir_fn != torch.nn.functional.conv1d:
            z_pre = fir_fn(u)[:, :L]  # B, L, D
            z_pre = z_pre.permute(0, 2, 1)
        else:
            u = u.permute(0, 2, 1)  # B, D, L
            z_pre = fir_fn(
                u,
                weight,
                bias=None,  # don't pass it here, add manually instead!  source of small error
                stride=1,
                padding=fir_length - 1,
                groups=u.shape[1],
            )[..., :L]

            # add manually instead!  source of small error
            z_pre = z_pre + bias[None, :, None]

        # handle padding post fir, the only place with biases
        if type(padding_mask) == torch.Tensor:
            z_pre = z_pre * padding_mask[:, None]

        if inference_params is not None:
            # handle seqlen last and dim last cases for `u`
            if fir_fn != torch.nn.functional.conv1d:
                fir_state = u[:, -fir_length + 1 :].permute(0, 2, 1)
            else:
                fir_state = u[..., -fir_length + 1 :]
        else:
            fir_state = None

        return z_pre, fir_state

    def parallel_iir(
        self,
        z_pre,
        h,
        D,
        L,
        poles,
        residues,
        t,
        dims,
        layer_idx,
        inference_params=None,
        prefill_style="fft",
        fftconv_fn=None,
        padding_mask=None,
        use_flashfft=False,
        column_split_hyena=False,
        long_fir_threshold=None,
    ):
        """Compute the output state of the short convolutional filter."""
        fft_size = 2 * L
        hidden_size, num_attention_heads, hidden_size_per_attention_head, _, _ = dims
        # Compatibility with training infra that column splits the projections
        if column_split_hyena:
            z = z_pre.reshape(
                z_pre.shape[0],
                num_attention_heads,
                3 * hidden_size_per_attention_head,
                z_pre.shape[2],
            )
            x2, x1, v = (
                z[:, :, :hidden_size_per_attention_head],
                z[
                    :,
                    :,
                    hidden_size_per_attention_head : 2 * hidden_size_per_attention_head,
                ],
                z[:, :, 2 * hidden_size_per_attention_head :],
            )
            x2, x1, v = (
                x2.reshape(x2.shape[0], -1, x2.shape[-1]),
                x1.reshape(x1.shape[0], -1, x1.shape[-1]),
                v.reshape(v.shape[0], -1, v.shape[-1]),
            )
        else:
            x2, x1, v = z_pre.split([hidden_size, hidden_size, hidden_size], dim=1)

        x1v = x1 * v

        if inference_params is not None and prefill_style == "recurrence":
            y = self.prefill_via_direct_recurrence(
                inference_params=inference_params,
                x1v=x1v,
                L=L,
                poles=poles,
                residues=residues,
            )

        else:
            if use_flashfft and (L % 2) == 0:  # only works with even L
                y = fftconv_fn(
                    x1v.to(dtype=torch.bfloat16).contiguous(),
                    h.to(dtype=torch.float32),
                )
                X_s = None

            elif long_fir_threshold is None:
                H = torch.fft.rfft(h.to(dtype=torch.float32), n=fft_size) / fft_size
                X_s = torch.fft.fft(x1v.to(dtype=torch.float32), n=fft_size)
                X = X_s[..., : H.shape[-1]]
                if len(z_pre.shape) > 3:
                    H = H.unsqueeze(1)
                y = torch.fft.irfft(X * H, n=fft_size, norm="forward")[..., :L]

            else:
                assert h.shape[0] == 1, "batch size must be 1 for long_fir_threshold"
                h = h[0][:, None]  # rearrange to d, 1, l for depthwise conv1d
                h = h[..., :long_fir_threshold]
                y = F.conv1d(
                    x1v,
                    h.to(dtype=x1v.dtype),
                    stride=1,
                    groups=x1v.shape[1],
                    padding=h.shape[-1] - 1,
                )[..., :L]

        y = y.to(dtype=x1v.dtype)
        y = (y + x1v * D.unsqueeze(-1)) * x2

        if inference_params is not None:
            if prefill_style == "fft":
                self.prefill_via_modal_fft(
                    inference_params=inference_params,
                    x1v=x1v,
                    X_s=X_s,
                    L=L,
                    t=t,
                    poles=poles,
                    dims=dims,
                    layer_idx=layer_idx,
                    use_flashfft=use_flashfft,
                    fftconv_fn=fftconv_fn,
                )

            elif prefill_style == "recurrence":
                # recurrent prefill is done before
                pass
            else:
                raise NotImplementedError
            if self.low_mem_mode:
                # TODO: smarter gc
                del z_pre, x2, x1, v, x1v, h, poles, residues
                torch.cuda.empty_cache()

        return y.permute(0, 2, 1)

    def step_fir(self, u, fir_state, weight, bias=None):
        """Step the FIR filter.

        Note:
        `fir_state` contains the last `short_filter_length - 1` elements of `u`: `u_(L-2), u_{L-1), ...`
        We assume dimensions of `short_filter_weight` to be `[d, 1, short_filter_len]` (SISO / multi SISO layout).
        """
        h0, h = weight[..., 0, -1], weight[..., 0, :-1]
        h0, h = h0[None], h[None]
        y = h0 * u + torch.sum(fir_state * h, dim=-1) + bias

        # update
        fir_state = torch.roll(fir_state, -1, dims=2)
        fir_state[..., -1] = u
        return y, fir_state

    def step_iir(self, x2, x1, v, D, residues, poles, iir_state, iir_groups=1):
        x1v = x1 * v

        residues, poles = (
            torch.view_as_complex(residues.to(torch.float32)),
            torch.view_as_complex(poles.to(torch.float32)),
        )
        # squeeze the dummy seqlen dimension
        # D, state_dim, 1 -> 1, D, state_dim
        residues, poles = residues[..., 0][None], poles[..., 0][None]
        iir_state = poles * iir_state + x1v[..., None]

        res_state = torch.sum(residues * iir_state, dim=-1).real

        if iir_groups > 1:
            raise NotImplementedError
        y = x2 * (res_state + D * x1v)

        return y, iir_state

    def prefill_via_fir_caching(self, u, inference_params, L, *args, **kwargs):
        """Turns the IIR filter into a FIR and uses a cache for decoding."""
        raise NotImplementedError(":)")

    def prefill_via_direct_recurrence(
        self, inference_params, x1v, L, residues, poles, *args, **kwargs
    ) -> torch.Tensor:
        """
        Compute the IIR state via explicit SSM recurrence (modal form)

        This is the most memory efficient prefilling method for Hyena filters.

        Note:
            dtypes: [state: float32, poles: float32, x1v: bfloat16, output: bfloat16]
        """
        state_dim = poles.shape[1]
        x1v_ = x1v[..., None, None]  # b, d, l, sdim, reim
        x1v_ = x1v_.repeat(1, 1, 1, state_dim, 2)  # b, d, l, sdim, reim
        x1v_[..., 1] = 0

        state = 0 * x1v_[:, :, 0]
        output = 0 * x1v_[:, :, :, 0, 0]  # b, d, l

        # suppress dummy seqlen dimension
        poles = poles[:, :, 0][None]
        residues = residues[:, :, 0][None].repeat(x1v_.shape[0], 1, 1, 1)  # b, d, sdim, reim

        # state: b, d, sdim, reim
        # poles: 1, d, sdim, reim
        # x1v_: b, d, l, sdim, reim
        for i in range(L):
            state[..., 0] = poles[..., 0] * state[..., 0] - poles[..., 1] * state[..., 1] + x1v_[:, :, i, :, 0]
            state[..., 1] = poles[..., 0] * state[..., 1] + poles[..., 1] * state[..., 0] + x1v_[:, :, i, :, 1] 
            output[:, :, i] = torch.sum(residues * state, dim=-2)[..., 0]  # .real
            
        inference_params.state_dict[self.layer_idx] = torch.view_as_complex(state.to(dtype=torch.float32))

        return output

    def prefill_via_hybrid_recurrence(self, inference_params, u, log_poles, x1v_f_a, L, *args, **kwargs):
        """
        Compute the IIR state via hybrid recurrence-convolution over blocks
        """
        raise NotImplementedError(":)")

    def prefill_via_scan(self, u, inference_params=None, *args, **kwargs):
        raise NotImplementedError

    def prefill_via_canonical_fft(self, u, inference_params=None, *args, **kwargs):
        """
        Compute the IIR state via a single FFT with the denominator of the SSM in companion form.

        This is the most memory efficient "parallelized" prefilling method for Hyena.

        From: https://arxiv.org/abs/2310.18780
        """
        raise NotImplementedError(":)")

    def prefill_via_modal_fft(
        self,
        inference_params,
        x1v,
        L,
        poles,
        t,
        dims,
        layer_idx,
        X_s=None,
        use_flashfft=False,
        fftconv_fn=None,
        state_dtype=torch.complex64,
        *args,
        **kwargs,
    ):
        """
        Compute the IIR state via a single FFT, using the poles of the SSM in modal form.
        """
        # When the model has a long convolution derived from a SSM in modal form and prefill_style is "fft",
        # we split the filter into poles and residues and reuse FFT computation on the input.
        # This optimization is currently not supported when using flashfftconv.
        hidden_size, _, _, state_size, hyena_filter_groups = dims

        if use_flashfft:
            # using real states
            poles = poles.squeeze().reshape(poles.shape[0], -1)[..., None]

            state_s = poles**t
            if hyena_filter_groups > 1:
                raise NotImplementedError

            x1v = x1v[:, :, None].repeat(1, 1, 2 * state_size, 1)
            x1v = x1v.reshape(x1v.shape[0], -1, x1v.shape[-1])
            state_s = state_s[None]

            state = fftconv_fn(
                x1v.contiguous(),
                state_s.to(dtype=torch.float32),
            )
            state = state[..., L - 1].reshape(x1v.shape[0], hidden_size, state_size, 2)
            state = torch.view_as_complex(state.contiguous().to(dtype=torch.float32))
            inference_params.state_dict[self.layer_idx] = state
        else:
            assert X_s is not None
            bs = x1v.shape[0]
            fft_size = 2 * L
            poles = torch.view_as_complex(poles.to(torch.float32))
            state_s = poles**t
            state_S = torch.fft.fft(state_s, n=fft_size).repeat(bs, 1, 1, 1)  # B, D, state_dim, 2 * L
            if hyena_filter_groups > 1:
                state_S = state_S.repeat_interleave(hidden_size // hyena_filter_groups, 1)
            state = torch.fft.ifft(X_s[..., None, :] * state_S, n=fft_size)
            inference_params.state_dict[layer_idx] = state[..., L - 1].to(dtype=state_dtype)

    def _compute_state(self, log_poles, u, t, L, *args, **kwargs):
        """
        Compute the IIR state given an input `u` and log_poles of the modal system.
        """
        bs = u.shape[0]
        fft_size = 2 * L
        U = torch.fft.rfft(u.to(torch.float32), n=fft_size)
        fft_size = 2 * L
        x = (log_poles * t).exp()
        # [batch, hidden_size, state_dim, 2 * seqlen]
        X = torch.fft.fft(x, n=fft_size).repeat(bs, 1, 1, 1)
        state = torch.fft.ifft(U[..., None, :] * X, n=fft_size)[..., :L]
        return state