bert-base-cased-ner
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0620
- Precision: 0.9406
- Recall: 0.9463
- F1: 0.9434
- Accuracy: 0.9861
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.5855 | 1.0 | 878 | 0.0848 | 0.8965 | 0.8980 | 0.8973 | 0.9760 |
0.058 | 2.0 | 1756 | 0.0607 | 0.9357 | 0.9379 | 0.9368 | 0.9840 |
0.0282 | 3.0 | 2634 | 0.0604 | 0.9354 | 0.9420 | 0.9387 | 0.9852 |
0.0148 | 4.0 | 3512 | 0.0606 | 0.9386 | 0.9485 | 0.9435 | 0.9861 |
0.0101 | 5.0 | 4390 | 0.0620 | 0.9406 | 0.9463 | 0.9434 | 0.9861 |
Framework versions
- Transformers 4.8.2
- Pytorch 1.8.1+cu111
- Datasets 1.8.0
- Tokenizers 0.10.3
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.