File size: 1,105 Bytes
788d33f 580ee2a 788d33f 580ee2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
---
pipeline_tag: image-classification
tags:
- model_hub_mixin
- pytorch_model_hub_mixin
- image-classification
license: mit
language:
- en
base_model:
- timm/vit_base_patch14_reg4_dinov2.lvd142m
---
# PdiscoFormer PartImageNet Seg Model (K=16)
PdiscoFormer (Vit-base-dinov2-reg4) trained on PartImageNet Seg with K (number of unsupervised parts to discover) set to a value of 16.
PdiscoFormer is a novel method for unsupervised part discovery using self-supervised Vision Transformers which achieves state-of-the-art results for this task, both qualitatively and quantitatively. The code can be found in the following repository: https://github.com/ananthu-aniraj/pdiscoformer
# BibTex entry and citation info
```
@misc{aniraj2024pdiscoformerrelaxingdiscoveryconstraints,
title={PDiscoFormer: Relaxing Part Discovery Constraints with Vision Transformers},
author={Ananthu Aniraj and Cassio F. Dantas and Dino Ienco and Diego Marcos},
year={2024},
eprint={2407.04538},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2407.04538},
} |