amjadfqs's picture
update model card README.md
2593499
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-skullStrippded_03
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9758007117437723
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-skullStrippded_03
This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0706
- Accuracy: 0.9758
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.2809 | 1.0 | 11 | 0.7111 | 0.7153 |
| 0.4554 | 2.0 | 22 | 0.2233 | 0.9139 |
| 0.2382 | 3.0 | 33 | 0.1730 | 0.9388 |
| 0.1453 | 4.0 | 44 | 0.1444 | 0.9509 |
| 0.1064 | 5.0 | 55 | 0.0900 | 0.9665 |
| 0.079 | 6.0 | 66 | 0.0866 | 0.9665 |
| 0.0606 | 7.0 | 77 | 0.1744 | 0.9402 |
| 0.0561 | 8.0 | 88 | 0.1116 | 0.9580 |
| 0.0406 | 9.0 | 99 | 0.0726 | 0.9730 |
| 0.0306 | 10.0 | 110 | 0.0706 | 0.9758 |
### Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.13.3