--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-skullStrippded_03 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9758007117437723 --- # swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-skullStrippded_03 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0706 - Accuracy: 0.9758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2809 | 1.0 | 11 | 0.7111 | 0.7153 | | 0.4554 | 2.0 | 22 | 0.2233 | 0.9139 | | 0.2382 | 3.0 | 33 | 0.1730 | 0.9388 | | 0.1453 | 4.0 | 44 | 0.1444 | 0.9509 | | 0.1064 | 5.0 | 55 | 0.0900 | 0.9665 | | 0.079 | 6.0 | 66 | 0.0866 | 0.9665 | | 0.0606 | 7.0 | 77 | 0.1744 | 0.9402 | | 0.0561 | 8.0 | 88 | 0.1116 | 0.9580 | | 0.0406 | 9.0 | 99 | 0.0726 | 0.9730 | | 0.0306 | 10.0 | 110 | 0.0706 | 0.9758 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3