File size: 10,398 Bytes
f6c39b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2738a8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
919bfb2
 
 
 
 
 
 
 
2738a8c
 
 
 
 
 
 
 
d995ff8
2738a8c
 
 
 
919bfb2
2738a8c
f4f5ec5
919bfb2
 
b158d45
2738a8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
919bfb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f1aa15
919bfb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
---
license: cc-by-nc-sa-4.0
language:
- en
- de
- zh
- fr
- nl
- el
- it
- es
- my
- he
- sv
- fa
- tr
- ur
library_name: transformers
pipeline_tag: audio-classification
tags:
- Speech Emotion Recognition
- SER
- Transformer
- HuBERT
- PyTorch
---

# **ExHuBERT: Enhancing HuBERT Through Block Extension and Fine-Tuning on 37 Emotion Datasets**
Authors: Shahin Amiriparian, Filip Packań, Maurice Gerczuk, Björn W. Schuller

Fine-tuned [**HuBERT Large**](https://huggingface.co/facebook/hubert-large-ls960-ft) on EmoSet++, comprising 37 datasets, totaling 150,907 samples and spanning a cumulative duration of 119.5 hours.
The model is expecting a 3 second long raw waveform resampled to 16 kHz. The original 6 Ouput classes are combinations of low/high arousal and negative/neutral/positive
valence.
Further details are available in the corresponding [**paper**](https://arxiv.org/)

**Note**: This model is for research purpose only.

### EmoSet++ subsets used for fine-tuning the model:

|     |    |     |    |     |
| :---:   | :---: | :---: | :---: | :---: |
| ABC [[1]](#1)| AD [[2]](#2)   | BES [[3]](#3)    | CASIA [[4]](#4)  | CVE [[5]](#5)   |
| Crema-D [[6]](#6)| DES [[7]](#)  | DEMoS [[8]](#8)   | EA-ACT [[9]](#9)  | EA-BMW  [[9]](#9) |
| EA-WSJ [[9]](#9) | EMO-DB  [[10]](#10)  | EmoFilm [[11]](#11)   | EmotiW-2014 [[12]](#12)  | EMOVO [[13]](#13)   |
| eNTERFACE [[14]](#14) | ESD  [[15]](#15)  | EU-EmoSS  [[16]](#16)  | EU-EV [[17]](#17)  | FAU Aibo [[18]](#18)   |
| GEMEP [[19]](#19) | GVESS [[20]](#20)   | IEMOCAP [[21]](#21)   | MES [[3]](#3)  |   MESD [[22]](#22)  |
| MELD [[23]](#23)|   PPMMK [[2]](#2) |  RAVDESS [[24]](#24)  |  SAVEE [[25]](#25) |   ShEMO [[26]](#26) |
| SmartKom [[27]](#27) |   SIMIS [[28]](#28)  |  SUSAS [[29]](#29)  |  SUBSECO [[30]](#30) |   TESS [[31]](#31) |
| TurkishEmo [[2]](#2) |  Urdu  [[32]](#32) |     |    |     |



### Usage

```python 
import torch
import torch.nn as nn
from transformers import AutoModelForAudioClassification, Wav2Vec2FeatureExtractor



# CONFIG and MODEL SETUP
model_name = 'amiriparian/ExHuBERT'
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/hubert-base-ls960")
model = AutoModelForAudioClassification.from_pretrained(model_name, trust_remote_code=True,revision="b158d45ed8578432468f3ab8d46cbe5974380812")

# Freezing half of the encoder
model.freeze_og_encoder()

sampling_rate=16000 
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)


```

### Citation Info


```
@inproceedings{Amiriparian24-EEH,
  author = {Shahin Amiriparian and Filip Packan and Maurice Gerczuk and Bj\"orn W.\ Schuller},
  title = {{ExHuBERT: Enhancing HuBERT Through Block Extension and Fine-Tuning on 37 Emotion Datasets}},
  booktitle = {{Proc. INTERSPEECH}}, 
  year = {2024},
  editor = {},
  volume = {},
  series = {},
  address = {Kos Island, Greece},
  month = {September},
  publisher = {ISCA},
}


```

### References

<a id="1">[1]</a> 
B. Schuller, D. Arsic, G. Rigoll, M. Wimmer, and B. Radig. Audiovisual Behavior
Modeling by Combined Feature Spaces. In 2007 IEEE International Conference on
Acoustics, Speech and Signal Processing - ICASSP ’07, volume 2, pages II–733–II–
736, Apr. 2007.


<a id="2">[2]</a> 
M. Gerczuk, S. Amiriparian, S. Ottl, and B. W. Schuller. EmoNet: A Transfer
Learning Framework for Multi-Corpus Speech Emotion Recognition. IEEE Trans-
actions on Affective Computing, 14(2):1472–1487, Apr. 2023.


<a id="3">[3]</a> 
T. L. Nwe, S. W. Foo, and L. C. De Silva. Speech emotion recognition using hidden
Markov models. Speech Communication, 41(4):603–623, Nov. 2003.


<a id="4">[4]</a> 
The selected speech emotion database of institute of automation chineseacademy of
sciences (casia). http://www.chineseldc.org/resource_info.php?rid=76. accessed March 2024.


<a id="5">[5]</a> 
P. Liu and M. D. Pell. Recognizing vocal emotions in Mandarin Chinese: A val-
idated database of Chinese vocal emotional stimuli. Behavior Research Methods,
44(4):1042–1051, Dec. 2012.


<a id="6">[6]</a> 
H. Cao, D. G. Cooper, M. K. Keutmann, R. C. Gur, A. Nenkova, and R. Verma.
CREMA-D: Crowd-sourced Emotional Multimodal Actors Dataset. IEEE transactions on affective computing, 5(4):377–390, 2014.



<a id="7">[7]</a> 
I. S. Engberg, A. V. Hansen, O. K. Andersen, and P. Dalsgaard. Design Record-
ing and Verification of a Danish Emotional Speech Database: Design Recording
and Verification of a Danish Emotional Speech Database. EUROSPEECH’97 : 5th
European Conference on Speech Communication and Technology, Patras, Rhodes,
Greece, 22-25 September 1997, pages Vol. 4, pp. 1695–1698, 1997.



<a id="8">[8]</a> 
E. Parada-Cabaleiro, G. Costantini, A. Batliner, M. Schmitt, and B. W. Schuller.
DEMoS: An Italian emotional speech corpus. Language Resources and Evaluation,
54(2):341–383, June 2020.


<a id="9">[9]</a> 
B. Schuller. Automatische Emotionserkennung Aus Sprachlicher Und Manueller
Interaktion. PhD thesis, Technische Universit¨at M¨unchen, 2006.


<a id="10">[10]</a>
F. Burkhardt, A. Paeschke, M. Rolfes, W. F. Sendlmeier, and B. Weiss. A database
of German emotional speech. In Interspeech 2005, pages 1517–1520. ISCA, Sept.
2005.


<a id="11">[11]</a> 
 E. Parada-Cabaleiro, G. Costantini, A. Batliner, A. Baird, and B. Schuller.
 Categorical vs Dimensional Perception of Italian Emotional Speech. In Interspeech 2018,
pages 3638–3642. ISCA, Sept. 2018.


<a id="12">[12]</a> 
A. Dhall, R. Goecke, J. Joshi, K. Sikka, and T. Gedeon. Emotion Recognition In
The Wild Challenge 2014: Baseline, Data and Protocol. In Proceedings of the 16th
International Conference on Multimodal Interaction, ICMI ’14, pages 461–466, New
York, NY, USA, Nov. 2014. Association for Computing Machinery.


<a id="13">[13]</a> 
G. Costantini, I. Iaderola, A. Paoloni, and M. Todisco. EMOVO Corpus: An Italian
Emotional Speech Database. In N. Calzolari, K. Choukri, T. Declerck, H. Loftsson,
B. Maegaard, J. Mariani, A. Moreno, J. Odijk, and S. Piperidis, editors, Proceed-
ings of the Ninth International Conference on Language Resources and Evaluation
(LREC’14), pages 3501–3504, Reykjavik, Iceland, May 2014. European Language
Resources Association (ELRA).



<a id="14">[14]</a> 
O. Martin, I. Kotsia, B. Macq, and I. Pitas. The eNTERFACE’ 05 Audio-Visual
Emotion Database. In 22nd International Conference on Data Engineering Work-
shops (ICDEW’06), pages 8–8, Apr. 2006.




<a id="15">[15]</a> 
K. Zhou, B. Sisman, R. Liu, and H. Li. Seen and Unseen emotional style transfer
for voice conversion with a new emotional speech dataset, Feb. 2021.



<a id="16">[16]</a> 
H. O’Reilly, D. Pigat, S. Fridenson, S. Berggren, S. Tal, O. Golan, S. B¨olte, S. Baron-
Cohen, and D. Lundqvist. The EU-Emotion Stimulus Set: A validation study.
Behavior Research Methods, 48(2):567–576, June 2016.



<a id="17">[17]</a>
A. Lassalle, D. Pigat, H. O’Reilly, S. Berggen, S. Fridenson-Hayo, S. Tal, S. Elfstr¨om,
A. R˚ade, O. Golan, S. B¨olte, S. Baron-Cohen, and D. Lundqvist. The EU-Emotion
Voice Database. Behavior Research Methods, 51(2):493–506, Apr. 2019.


<a id="18">[18]</a> 
A. Batliner, S. Steidl, and E. Noth. Releasing a thoroughly annotated and processed
spontaneous emotional database: The FAU Aibo Emotion Corpus. 2008.


<a id="19">[19]</a> 
K. R. Scherer, T. B¨anziger, and E. Roesch. A Blueprint for Affective Computing:
A Sourcebook and Manual. OUP Oxford, Sept. 2010.


<a id="20">[20]</a> 
R. Banse and K. R. Scherer. Acoustic profiles in vocal emotion expression. Journal
of Personality and Social Psychology, 70(3):614–636, 1996.


<a id="21">[21]</a> 
C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower, S. Kim, J. N. Chang,
S. Lee, and S. S. Narayanan. IEMOCAP: Interactive emotional dyadic motion
capture database. Language Resources and Evaluation, 42(4):335–359, Dec. 2008.

<a id="22">[22]</a> 
M. M. Duville, L. M. Alonso-Valerdi, and D. I. Ibarra-Zarate. The Mexican Emo-
tional Speech Database (MESD): Elaboration and assessment based on machine
learning. Annual International Conference of the IEEE Engineering in Medicine
and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual
International Conference, 2021:1644–1647, Nov. 2021.

<a id="23">[23]</a> 
S. Poria, D. Hazarika, N. Majumder, G. Naik, E. Cambria, and R. Mihalcea. MELD:
A Multimodal Multi-Party Dataset for Emotion Recognition in Conversations, June
2019.

<a id="24">[24]</a> 
S. R. Livingstone and F. A. Russo. The Ryerson Audio-Visual Database of Emo-
tional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal
expressions in North American English. PLOS ONE, 13(5):e0196391, May 2018.


<a id="25">[25]</a> 
S. Haq and P. J. B. Jackson. Speaker-dependent audio-visual emotion recognition.
In Proc. AVSP 2009, pages 53–58, 2009.


<a id="26">[26]</a> 
O. Mohamad Nezami, P. Jamshid Lou, and M. Karami. ShEMO: A large-scale
validated database for Persian speech emotion detection. Language Resources and
Evaluation, 53(1):1–16, Mar. 2019.


<a id="27">[27]</a> 
F. Schiel, S. Steininger, and U. T¨urk. The SmartKom Multimodal Corpus at BAS. In
M. Gonz´alez Rodr´ıguez and C. P. Suarez Araujo, editors, Proceedings of the Third
International Conference on Language Resources and Evaluation (LREC’02), Las
Palmas, Canary Islands - Spain, May 2002. European Language Resources Association (ELRA).


<a id="28">[28]</a> 
B. Schuller, F. Eyben, S. Can, and H. Feußner. Speech in Minimal Invasive Surgery - Towards an Affective Language Resource of Real-life Medical Operations. 2010.


<a id="29">[29]</a> 
J. H. L. Hansen and S. E. Bou-Ghazale. Getting started with SUSAS: A speech under
simulated and actual stress database. In Proc. Eurospeech 1997, pages 1743–1746,
1997.



<a id="30">[30]</a> 
S. Sultana, M. S. Rahman, M. R. Selim, and M. Z. Iqbal. SUST Bangla Emotional
Speech Corpus (SUBESCO): An audio-only emotional speech corpus for Bangla.
PLOS ONE, 16(4):e0250173, Apr. 2021.


<a id="31">[31]</a> 
M. K. Pichora-Fuller and K. Dupuis. Toronto emotional speech set (TESS), Feb.
2020.



<a id="32">[32]</a> 
S. Latif, A. Qayyum, M. Usman, and J. Qadir. Cross Lingual Speech Emotion
Recognition: Urdu vs. Western Languages. In 2018 International Conference on
Frontiers of Information Technology (FIT), pages 88–93, Dec. 2018.