File size: 10,398 Bytes
f6c39b5 2738a8c 919bfb2 2738a8c d995ff8 2738a8c 919bfb2 2738a8c f4f5ec5 919bfb2 b158d45 2738a8c 919bfb2 6f1aa15 919bfb2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
---
license: cc-by-nc-sa-4.0
language:
- en
- de
- zh
- fr
- nl
- el
- it
- es
- my
- he
- sv
- fa
- tr
- ur
library_name: transformers
pipeline_tag: audio-classification
tags:
- Speech Emotion Recognition
- SER
- Transformer
- HuBERT
- PyTorch
---
# **ExHuBERT: Enhancing HuBERT Through Block Extension and Fine-Tuning on 37 Emotion Datasets**
Authors: Shahin Amiriparian, Filip Packań, Maurice Gerczuk, Björn W. Schuller
Fine-tuned [**HuBERT Large**](https://huggingface.co/facebook/hubert-large-ls960-ft) on EmoSet++, comprising 37 datasets, totaling 150,907 samples and spanning a cumulative duration of 119.5 hours.
The model is expecting a 3 second long raw waveform resampled to 16 kHz. The original 6 Ouput classes are combinations of low/high arousal and negative/neutral/positive
valence.
Further details are available in the corresponding [**paper**](https://arxiv.org/)
**Note**: This model is for research purpose only.
### EmoSet++ subsets used for fine-tuning the model:
| | | | | |
| :---: | :---: | :---: | :---: | :---: |
| ABC [[1]](#1)| AD [[2]](#2) | BES [[3]](#3) | CASIA [[4]](#4) | CVE [[5]](#5) |
| Crema-D [[6]](#6)| DES [[7]](#) | DEMoS [[8]](#8) | EA-ACT [[9]](#9) | EA-BMW [[9]](#9) |
| EA-WSJ [[9]](#9) | EMO-DB [[10]](#10) | EmoFilm [[11]](#11) | EmotiW-2014 [[12]](#12) | EMOVO [[13]](#13) |
| eNTERFACE [[14]](#14) | ESD [[15]](#15) | EU-EmoSS [[16]](#16) | EU-EV [[17]](#17) | FAU Aibo [[18]](#18) |
| GEMEP [[19]](#19) | GVESS [[20]](#20) | IEMOCAP [[21]](#21) | MES [[3]](#3) | MESD [[22]](#22) |
| MELD [[23]](#23)| PPMMK [[2]](#2) | RAVDESS [[24]](#24) | SAVEE [[25]](#25) | ShEMO [[26]](#26) |
| SmartKom [[27]](#27) | SIMIS [[28]](#28) | SUSAS [[29]](#29) | SUBSECO [[30]](#30) | TESS [[31]](#31) |
| TurkishEmo [[2]](#2) | Urdu [[32]](#32) | | | |
### Usage
```python
import torch
import torch.nn as nn
from transformers import AutoModelForAudioClassification, Wav2Vec2FeatureExtractor
# CONFIG and MODEL SETUP
model_name = 'amiriparian/ExHuBERT'
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/hubert-base-ls960")
model = AutoModelForAudioClassification.from_pretrained(model_name, trust_remote_code=True,revision="b158d45ed8578432468f3ab8d46cbe5974380812")
# Freezing half of the encoder
model.freeze_og_encoder()
sampling_rate=16000
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
```
### Citation Info
```
@inproceedings{Amiriparian24-EEH,
author = {Shahin Amiriparian and Filip Packan and Maurice Gerczuk and Bj\"orn W.\ Schuller},
title = {{ExHuBERT: Enhancing HuBERT Through Block Extension and Fine-Tuning on 37 Emotion Datasets}},
booktitle = {{Proc. INTERSPEECH}},
year = {2024},
editor = {},
volume = {},
series = {},
address = {Kos Island, Greece},
month = {September},
publisher = {ISCA},
}
```
### References
<a id="1">[1]</a>
B. Schuller, D. Arsic, G. Rigoll, M. Wimmer, and B. Radig. Audiovisual Behavior
Modeling by Combined Feature Spaces. In 2007 IEEE International Conference on
Acoustics, Speech and Signal Processing - ICASSP ’07, volume 2, pages II–733–II–
736, Apr. 2007.
<a id="2">[2]</a>
M. Gerczuk, S. Amiriparian, S. Ottl, and B. W. Schuller. EmoNet: A Transfer
Learning Framework for Multi-Corpus Speech Emotion Recognition. IEEE Trans-
actions on Affective Computing, 14(2):1472–1487, Apr. 2023.
<a id="3">[3]</a>
T. L. Nwe, S. W. Foo, and L. C. De Silva. Speech emotion recognition using hidden
Markov models. Speech Communication, 41(4):603–623, Nov. 2003.
<a id="4">[4]</a>
The selected speech emotion database of institute of automation chineseacademy of
sciences (casia). http://www.chineseldc.org/resource_info.php?rid=76. accessed March 2024.
<a id="5">[5]</a>
P. Liu and M. D. Pell. Recognizing vocal emotions in Mandarin Chinese: A val-
idated database of Chinese vocal emotional stimuli. Behavior Research Methods,
44(4):1042–1051, Dec. 2012.
<a id="6">[6]</a>
H. Cao, D. G. Cooper, M. K. Keutmann, R. C. Gur, A. Nenkova, and R. Verma.
CREMA-D: Crowd-sourced Emotional Multimodal Actors Dataset. IEEE transactions on affective computing, 5(4):377–390, 2014.
<a id="7">[7]</a>
I. S. Engberg, A. V. Hansen, O. K. Andersen, and P. Dalsgaard. Design Record-
ing and Verification of a Danish Emotional Speech Database: Design Recording
and Verification of a Danish Emotional Speech Database. EUROSPEECH’97 : 5th
European Conference on Speech Communication and Technology, Patras, Rhodes,
Greece, 22-25 September 1997, pages Vol. 4, pp. 1695–1698, 1997.
<a id="8">[8]</a>
E. Parada-Cabaleiro, G. Costantini, A. Batliner, M. Schmitt, and B. W. Schuller.
DEMoS: An Italian emotional speech corpus. Language Resources and Evaluation,
54(2):341–383, June 2020.
<a id="9">[9]</a>
B. Schuller. Automatische Emotionserkennung Aus Sprachlicher Und Manueller
Interaktion. PhD thesis, Technische Universit¨at M¨unchen, 2006.
<a id="10">[10]</a>
F. Burkhardt, A. Paeschke, M. Rolfes, W. F. Sendlmeier, and B. Weiss. A database
of German emotional speech. In Interspeech 2005, pages 1517–1520. ISCA, Sept.
2005.
<a id="11">[11]</a>
E. Parada-Cabaleiro, G. Costantini, A. Batliner, A. Baird, and B. Schuller.
Categorical vs Dimensional Perception of Italian Emotional Speech. In Interspeech 2018,
pages 3638–3642. ISCA, Sept. 2018.
<a id="12">[12]</a>
A. Dhall, R. Goecke, J. Joshi, K. Sikka, and T. Gedeon. Emotion Recognition In
The Wild Challenge 2014: Baseline, Data and Protocol. In Proceedings of the 16th
International Conference on Multimodal Interaction, ICMI ’14, pages 461–466, New
York, NY, USA, Nov. 2014. Association for Computing Machinery.
<a id="13">[13]</a>
G. Costantini, I. Iaderola, A. Paoloni, and M. Todisco. EMOVO Corpus: An Italian
Emotional Speech Database. In N. Calzolari, K. Choukri, T. Declerck, H. Loftsson,
B. Maegaard, J. Mariani, A. Moreno, J. Odijk, and S. Piperidis, editors, Proceed-
ings of the Ninth International Conference on Language Resources and Evaluation
(LREC’14), pages 3501–3504, Reykjavik, Iceland, May 2014. European Language
Resources Association (ELRA).
<a id="14">[14]</a>
O. Martin, I. Kotsia, B. Macq, and I. Pitas. The eNTERFACE’ 05 Audio-Visual
Emotion Database. In 22nd International Conference on Data Engineering Work-
shops (ICDEW’06), pages 8–8, Apr. 2006.
<a id="15">[15]</a>
K. Zhou, B. Sisman, R. Liu, and H. Li. Seen and Unseen emotional style transfer
for voice conversion with a new emotional speech dataset, Feb. 2021.
<a id="16">[16]</a>
H. O’Reilly, D. Pigat, S. Fridenson, S. Berggren, S. Tal, O. Golan, S. B¨olte, S. Baron-
Cohen, and D. Lundqvist. The EU-Emotion Stimulus Set: A validation study.
Behavior Research Methods, 48(2):567–576, June 2016.
<a id="17">[17]</a>
A. Lassalle, D. Pigat, H. O’Reilly, S. Berggen, S. Fridenson-Hayo, S. Tal, S. Elfstr¨om,
A. R˚ade, O. Golan, S. B¨olte, S. Baron-Cohen, and D. Lundqvist. The EU-Emotion
Voice Database. Behavior Research Methods, 51(2):493–506, Apr. 2019.
<a id="18">[18]</a>
A. Batliner, S. Steidl, and E. Noth. Releasing a thoroughly annotated and processed
spontaneous emotional database: The FAU Aibo Emotion Corpus. 2008.
<a id="19">[19]</a>
K. R. Scherer, T. B¨anziger, and E. Roesch. A Blueprint for Affective Computing:
A Sourcebook and Manual. OUP Oxford, Sept. 2010.
<a id="20">[20]</a>
R. Banse and K. R. Scherer. Acoustic profiles in vocal emotion expression. Journal
of Personality and Social Psychology, 70(3):614–636, 1996.
<a id="21">[21]</a>
C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower, S. Kim, J. N. Chang,
S. Lee, and S. S. Narayanan. IEMOCAP: Interactive emotional dyadic motion
capture database. Language Resources and Evaluation, 42(4):335–359, Dec. 2008.
<a id="22">[22]</a>
M. M. Duville, L. M. Alonso-Valerdi, and D. I. Ibarra-Zarate. The Mexican Emo-
tional Speech Database (MESD): Elaboration and assessment based on machine
learning. Annual International Conference of the IEEE Engineering in Medicine
and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual
International Conference, 2021:1644–1647, Nov. 2021.
<a id="23">[23]</a>
S. Poria, D. Hazarika, N. Majumder, G. Naik, E. Cambria, and R. Mihalcea. MELD:
A Multimodal Multi-Party Dataset for Emotion Recognition in Conversations, June
2019.
<a id="24">[24]</a>
S. R. Livingstone and F. A. Russo. The Ryerson Audio-Visual Database of Emo-
tional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal
expressions in North American English. PLOS ONE, 13(5):e0196391, May 2018.
<a id="25">[25]</a>
S. Haq and P. J. B. Jackson. Speaker-dependent audio-visual emotion recognition.
In Proc. AVSP 2009, pages 53–58, 2009.
<a id="26">[26]</a>
O. Mohamad Nezami, P. Jamshid Lou, and M. Karami. ShEMO: A large-scale
validated database for Persian speech emotion detection. Language Resources and
Evaluation, 53(1):1–16, Mar. 2019.
<a id="27">[27]</a>
F. Schiel, S. Steininger, and U. T¨urk. The SmartKom Multimodal Corpus at BAS. In
M. Gonz´alez Rodr´ıguez and C. P. Suarez Araujo, editors, Proceedings of the Third
International Conference on Language Resources and Evaluation (LREC’02), Las
Palmas, Canary Islands - Spain, May 2002. European Language Resources Association (ELRA).
<a id="28">[28]</a>
B. Schuller, F. Eyben, S. Can, and H. Feußner. Speech in Minimal Invasive Surgery - Towards an Affective Language Resource of Real-life Medical Operations. 2010.
<a id="29">[29]</a>
J. H. L. Hansen and S. E. Bou-Ghazale. Getting started with SUSAS: A speech under
simulated and actual stress database. In Proc. Eurospeech 1997, pages 1743–1746,
1997.
<a id="30">[30]</a>
S. Sultana, M. S. Rahman, M. R. Selim, and M. Z. Iqbal. SUST Bangla Emotional
Speech Corpus (SUBESCO): An audio-only emotional speech corpus for Bangla.
PLOS ONE, 16(4):e0250173, Apr. 2021.
<a id="31">[31]</a>
M. K. Pichora-Fuller and K. Dupuis. Toronto emotional speech set (TESS), Feb.
2020.
<a id="32">[32]</a>
S. Latif, A. Qayyum, M. Usman, and J. Qadir. Cross Lingual Speech Emotion
Recognition: Urdu vs. Western Languages. In 2018 International Conference on
Frontiers of Information Technology (FIT), pages 88–93, Dec. 2018.
|