File size: 2,182 Bytes
e8e77a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---

library_name: transformers
language:
- ps
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- pairsys/open_asr
metrics:
- wer
model-index:
- name: Whisper Small Pashto
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Open ASR
      type: pairsys/open_asr
      args: 'config: pashto'
    metrics:
    - name: Wer
      type: wer
      value: 34.475374732334046
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small Pashto

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Open ASR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7846
- Wer: 34.4754

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05

- train_batch_size: 16

- eval_batch_size: 8

- seed: 42

- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments

- lr_scheduler_type: linear

- lr_scheduler_warmup_steps: 500
- training_steps: 5000

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch   | Step | Validation Loss | Wer     |

|:-------------:|:-------:|:----:|:---------------:|:-------:|

| 0.0112        | 17.8571 | 1000 | 0.6265          | 38.1462 |

| 0.0023        | 35.7143 | 2000 | 0.7230          | 35.0260 |

| 0.0006        | 53.5714 | 3000 | 0.7555          | 34.7201 |

| 0.0001        | 71.4286 | 4000 | 0.7708          | 34.9342 |

| 0.0001        | 89.2857 | 5000 | 0.7846          | 34.4754 |





### Framework versions



- Transformers 4.46.2

- Pytorch 2.5.1

- Datasets 3.1.0

- Tokenizers 0.20.3