File size: 7,861 Bytes
27651a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
# (Modifications Copyright(C) [2024] Advanced Micro Devices, Inc. All rights reserved)
"""
Script for preparing the SFT data for fine-tuning AMD-OLMo model.
Modifed from https://github.com/allenai/OLMo/blob/main/scripts/prepare_tulu_data.py
"""
import logging
from argparse import ArgumentParser
from functools import partial
from pathlib import Path
import datasets as ds
import numpy as np
from rich.progress import track
from olmo.tokenizer import Tokenizer
from olmo.util import prepare_cli_environment
import random
from tqdm import tqdm
log = logging.getLogger(__name__)
def convert_code_feedback_to_tulu_format(dataset, mix=False):
log.info("Converting code_feedback ...")
y_all = []
for i, sample in enumerate(dataset):
y = {
"dataset": "code_feedback",
"id": "code_feedback_{}".format(i),
"messages": sample['messages']
}
y_all.append(y)
log.info(f"In total {len(y_all)} samples")
if mix:
return y_all
else:
new_dataset = ds.Dataset.from_list(y_all)
return new_dataset
def convert_OpenHermes_to_tulu_format(dataset, mix=False):
log.info("Converting OpenHermes ...")
role_map = {"human": "user", "gpt": "assistant", "system": "system"}
y_all = []
for i, sample in enumerate(dataset):
y = {
"dataset": "OpenHermes",
"id": "OpenHermes_{}".format(i),
"messages": [{"role": role_map[mssg["from"]], "content": mssg["value"]} for mssg in sample['conversations']]
}
y_all.append(y)
log.info(f"In total {len(y_all)} samples")
if mix:
return y_all
else:
new_dataset = ds.Dataset.from_list(y_all)
return new_dataset
def convert_WebInstructSub_to_tulu_format(dataset, mix=False):
log.info("Converting WebInstructSub ...")
y_all = []
for i, sample in tqdm(enumerate(dataset)):
y = {
"dataset": "WebInstructSub",
"id": "WebInstructSub_{}".format(i),
"messages": [{"role": "user", "content": sample["question"]}, {"role": "assistant", "content": sample["answer"]}]
}
y_all.append(y)
log.info(f"In total {len(y_all)} samples")
if mix:
return y_all
else:
new_dataset = ds.Dataset.from_list(y_all)
return new_dataset
def main(opts) -> None:
tokenizer: Tokenizer
if Path(opts.tokenizer).is_file():
tokenizer = Tokenizer.from_file(opts.tokenizer, eos_token_id=opts.eos, pad_token_id=opts.pad)
else:
tokenizer = Tokenizer.from_pretrained(opts.tokenizer, eos_token_id=opts.eos, pad_token_id=opts.pad)
if opts.dataset == "tulu":
dataset = ds.load_dataset("allenai/tulu-v2-sft-mixture", split="train")
elif opts.dataset == "2nd-phase":
datasets = ["code-feedback", "OpenHermes", "WebInstructSub"]
combined_datasets = []
for dataset_name in datasets:
if dataset_name == "code-feedback":
dataset = ds.load_dataset("m-a-p/Code-Feedback", split="train")
dataset = convert_code_feedback_to_tulu_format(dataset, mix=True)
elif dataset_name == "OpenHermes":
dataset = ds.load_dataset("teknium/OpenHermes-2.5", split="train")
dataset = convert_OpenHermes_to_tulu_format(dataset, mix=True)
elif dataset_name == "WebInstructSub":
dataset = ds.load_dataset("TIGER-Lab/WebInstructSub", split="train")
dataset = convert_WebInstructSub_to_tulu_format(dataset, mix=True)
combined_datasets += dataset
random.seed(42)
random.shuffle(combined_datasets)
log.info(f"In total {len(combined_datasets)} samples")
dataset = ds.Dataset.from_list(combined_datasets)
log.info("Tokenizing dataset...")
dataset = dataset.map(
partial(preprocess, tokenizer=tokenizer, max_seq_len=opts.seq_len),
batched=False,
remove_columns=["dataset", "id", "messages"],
num_proc=opts.num_proc, # type: ignore
)
log.info("Filtering dataset...")
n = len(dataset) # type: ignore
dataset = dataset.filter(filter, batched=False, num_proc=opts.num_proc) # type: ignore
log.info(f"Filtered out {n - len(dataset):,d} examples")
log.info("Counting tokens...")
total_tokens = 0
for ex in track(dataset):
assert len(ex["input_ids"]) == opts.seq_len # type: ignore
total_tokens += len(ex["input_ids"]) # type: ignore
log.info(f"Total tokens: {total_tokens:,d}")
log.info(f"Saving results to '{opts.output_dir}'...")
output_dir = Path(opts.output_dir)
output_dir.mkdir(exist_ok=True, parents=True)
input_ids_file = np.memmap(
str(output_dir / "input_ids.npy"), dtype=np.uint16, mode="w+", shape=(total_tokens,)
)
label_mask_file = np.memmap(
str(output_dir / "label_mask.npy"), dtype=np.bool_, mode="w+", shape=(total_tokens,)
)
offset = 0
for ex in track(dataset):
ex_len = len(ex["input_ids"]) # type: ignore
input_ids_file[offset : offset + ex_len] = ex["input_ids"] # type: ignore
label_mask_file[offset : offset + ex_len] = ex["label_mask"] # type: ignore
offset += ex_len
input_ids_file.flush()
label_mask_file.flush()
log.info("Done!")
def filter(example):
return example["n_labels"] > 0
def preprocess(example, tokenizer: Tokenizer, max_seq_len: int):
input_ids = [tokenizer.eos_token_id]
label_mask = [False]
for msg in example["messages"]:
role_tokens = tokenizer.encode(f"<|{msg['role']}|>\n", add_special_tokens=False)
label_mask += [False] * len(role_tokens)
input_ids += role_tokens
if msg["role"] == "assistant":
content_tokens = tokenizer.encode(
msg["content"].strip() + tokenizer.eos_token + "\n", add_special_tokens=False
)
label_mask += [True] * len(content_tokens)
# mask out the last '\n'
assert content_tokens[-2] == tokenizer.eos_token_id
label_mask[-1] = False
else:
content_tokens = tokenizer.encode(msg["content"].strip() + "\n", add_special_tokens=False)
label_mask += [False] * len(content_tokens)
input_ids += content_tokens
input_ids = input_ids[:max_seq_len]
label_mask = label_mask[:max_seq_len]
if len(input_ids) < max_seq_len:
pad_len = max_seq_len - len(input_ids)
input_ids += [tokenizer.pad_token_id] * pad_len
label_mask += [False] * pad_len
assert len(input_ids) == len(label_mask)
n_labels = sum(label_mask)
return {"input_ids": input_ids, "label_mask": label_mask, "n_labels": n_labels}
def get_parser() -> ArgumentParser:
parser = ArgumentParser(description="Prepare Math dataset")
parser.add_argument("--output_dir", type=str, help="""Directory to save the results to.""")
parser.add_argument(
"-t",
"--tokenizer",
type=str,
help="""Tokenizer path or identifier.""",
default=Path(__file__).parent / "tokenizers" / "allenai_eleuther-ai-gpt-neox-20b-pii-special.json",
)
parser.add_argument("-ds", "--dataset", type=str, help="""Dataset that we are processing. tulu or 2nd-phase""", default="tulu")
parser.add_argument("-s", "--seq-len", type=int, help="""Max sequence length.""", default=2048)
parser.add_argument("--eos", type=int, help="""EOS token ID.""", default=50279)
parser.add_argument("--pad", type=int, help="""PAD token ID.""", default=1)
parser.add_argument("-j", "--num-proc", type=int, help="""Number of workers.""", default=8)
return parser
if __name__ == "__main__":
prepare_cli_environment()
opts = get_parser().parse_args()
main(opts) |