|
--- |
|
license: apache-2.0 |
|
--- |
|
|
|
# amazingvince/Not-WizardLM-2-7B |
|
|
|
<a href="https://colab.research.google.com/gist/pszemraj/d3d74ceab942722b49188606785e2bfd/not-wizardlm-2-7b-inference.ipynb"> |
|
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> |
|
</a> |
|
|
|
Included is code ripped from fastchat with the expected chat templating. |
|
|
|
Also wiz.pdf is a pdf of the github blog showing the apache 2 release. |
|
Link to wayback machine included: https://web.archive.org/web/20240415221214/https://wizardlm.github.io/WizardLM2/ |
|
|
|
|
|
|
|
## example |
|
|
|
```python |
|
import dataclasses |
|
from enum import auto, Enum |
|
from typing import List, Tuple, Any |
|
|
|
|
|
class SeparatorStyle(Enum): |
|
"""Different separator style.""" |
|
SINGLE = auto() |
|
TWO = auto() |
|
|
|
|
|
@dataclasses.dataclass |
|
class Conversation: |
|
"""A class that keeps all conversation history.""" |
|
system: str |
|
roles: List[str] |
|
messages: List[List[str]] |
|
offset: int |
|
sep_style: SeparatorStyle = SeparatorStyle.SINGLE |
|
sep: str = "###" |
|
sep2: str = None |
|
|
|
# Used for gradio server |
|
skip_next: bool = False |
|
conv_id: Any = None |
|
|
|
def get_prompt(self): |
|
if self.sep_style == SeparatorStyle.SINGLE: |
|
ret = self.system |
|
for role, message in self.messages: |
|
if message: |
|
ret += self.sep + " " + role + ": " + message |
|
else: |
|
ret += self.sep + " " + role + ":" |
|
return ret |
|
elif self.sep_style == SeparatorStyle.TWO: |
|
seps = [self.sep, self.sep2] |
|
ret = self.system + seps[0] |
|
for i, (role, message) in enumerate(self.messages): |
|
if message: |
|
ret += role + ": " + message + seps[i % 2] |
|
else: |
|
ret += role + ":" |
|
return ret |
|
else: |
|
raise ValueError(f"Invalid style: {self.sep_style}") |
|
|
|
def append_message(self, role, message): |
|
self.messages.append([role, message]) |
|
|
|
def to_gradio_chatbot(self): |
|
ret = [] |
|
for i, (role, msg) in enumerate(self.messages[self.offset:]): |
|
if i % 2 == 0: |
|
ret.append([msg, None]) |
|
else: |
|
ret[-1][-1] = msg |
|
return ret |
|
|
|
def copy(self): |
|
return Conversation( |
|
system=self.system, |
|
roles=self.roles, |
|
messages=[[x, y] for x, y in self.messages], |
|
offset=self.offset, |
|
sep_style=self.sep_style, |
|
sep=self.sep, |
|
sep2=self.sep2, |
|
conv_id=self.conv_id) |
|
|
|
def dict(self): |
|
return { |
|
"system": self.system, |
|
"roles": self.roles, |
|
"messages": self.messages, |
|
"offset": self.offset, |
|
"sep": self.sep, |
|
"sep2": self.sep2, |
|
"conv_id": self.conv_id, |
|
} |
|
|
|
|
|
|
|
conv = Conversation( |
|
system="A chat between a curious user and an artificial intelligence assistant. " |
|
"The assistant gives helpful, detailed, and polite answers to the user's questions.", |
|
roles=("USER", "ASSISTANT"), |
|
messages=[], |
|
offset=0, |
|
sep_style=SeparatorStyle.TWO, |
|
sep=" ", |
|
sep2="</s>", |
|
) |
|
|
|
conv.append_message(conv.roles[0], "Why would Microsoft take this down?") |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
|
|
result = model.generate(**inputs, max_new_tokens=1000) |
|
generated_ids = result[0] |
|
generated_text = tokenizer.decode(generated_ids, skip_special_tokens=True) |
|
print(generated_text) |
|
|
|
``` |