PyTorch
music
text-to-music
symbolic-music
File size: 68,142 Bytes
3953f0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
# from aria.tokenizer import AbsTokenizer
# aria_tokenizer = AbsTokenizer()
import copy
import json
from typing import Optional, Any, Union, Callable
import torch.multiprocessing as mp
from torch.nn import DataParallel
import jsonlines
import math
import time
import torch
import os
import warnings
from tqdm import tqdm
from torch import Tensor
# from aria.tokenizer import AbsTokenizer
import pickle
from torch.nn import Module, LayerNorm, Dropout, Linear
from torch.nn.modules.container import ModuleList
from torch.nn.modules.activation import MultiheadAttention
from torch.nn.init import xavier_uniform_
import torch.nn.functional as F
import torch.nn as nn

from st_moe_pytorch import MoE
from st_moe_pytorch import SparseMoEBlock

from einops import rearrange

from transformers import T5Tokenizer, T5EncoderModel


__all__ = ['Transformer', 'TransformerEncoder', 'TransformerDecoder', 'TransformerEncoderLayer', 'TransformerDecoderLayer']

def _generate_square_subsequent_mask(
        sz: int,
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
) -> Tensor:
    r"""Generate a square causal mask for the sequence.

    The masked positions are filled with float('-inf'). Unmasked positions are filled with float(0.0).
    """
    if device is None:
        device = torch.device('cpu')
    if dtype is None:
        dtype = torch.float32
    return torch.triu(
        torch.full((sz, sz), float('-inf'), dtype=dtype, device=device),
        diagonal=1,
    )


def _get_seq_len(
        src: Tensor,
        batch_first: bool
) -> Optional[int]:

    if src.is_nested:
        return None
    else:
        src_size = src.size()
        if len(src_size) == 2:
            # unbatched: S, E
            return src_size[0]
        else:
            # batched: B, S, E if batch_first else S, B, E
            seq_len_pos = 1 if batch_first else 0
            return src_size[seq_len_pos]


class PositionalEncoding(nn.Module):
    r"""Inject some information about the relative or absolute position of the tokens in the sequence.
        The positional encodings have the same dimension as the embeddings, so that the two can be summed.
        Here, we use sine and cosine functions of different frequencies.
    .. math:
        \text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
        \text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
        \text{where pos is the word position and i is the embed idx)
    Args:
        d_model: the embed dim (required).
        dropout: the dropout value (default=0.1).
        max_len: the max. length of the incoming sequence (default=5000).
    Examples:
        >>> pos_encoder = PositionalEncoding(d_model)
    """

    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose(0, 1)
        # self.register_buffer('pe', pe)
        self.register_parameter('pe', nn.Parameter(pe, requires_grad=False))

    def forward(self, x):
        r"""Inputs of forward function
        Args:
            x: the sequence fed to the positional encoder model (required).
        Shape:
            x: [sequence length, batch size, embed dim]
            output: [sequence length, batch size, embed dim]
        Examples:
            >>> output = pos_encoder(x)
        """
        x = x + self.pe[:x.size(0), :]
        return self.dropout(x)


def precompute_freqs_cis(
    seq_len: int,
    n_elem: int,
    base: int = 10000,
    dtype: torch.dtype = torch.bfloat16,
):
    freqs = 1.0 / (
        base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)
    )
    t = torch.arange(seq_len, device=freqs.device)
    freqs = torch.outer(t, freqs)
    freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
    cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)

    return cache.to(dtype=dtype)


@torch.jit.script
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
    """
    In-place RoPE. Credits to Katherine Crowson:
    x shape (b_sz, n_head, s_len, d_head).
    cos, sin shape (s_len, d_head // 2).
    """

    x = x.permute(0, 2, 1, 3)
    d = x.shape[-1] // 2
    cos = freqs_cis[..., 0][None, :, None]
    sin = freqs_cis[..., 1][None, :, None]
    x1, x2 = x[..., :d], x[..., d : d * 2]
    tmp = x1.clone()
    # x1.mul_(cos).addcmul_(x2, sin, value=-1)
    # x2.mul_(cos).addcmul_(tmp, sin, value=1) ##was throwing some error: RuntimeError: Output 0 of SliceBackward0 is a view and is being modified inplace. This view is the output of a function that returns multiple views. Such functions do not allow the output views to be modified inplace. You should replace the inplace operation by an out-of-place one.
    x1_new = x1.mul(cos) - x2.mul(sin)
    x2_new = x2.mul(cos) + tmp.mul(sin)
    x = torch.cat((x1_new, x2_new), dim=-1)
    x = x.permute(0, 2, 1, 3)
    
    return x


class MultiHeadSelfAttention(nn.Module):
    r"""Multi-head self-attention module.

    Args:
        embed_dim (int): The input embedding dimension.
        num_heads (int, optional): The number of attention heads (default: 4).
        dropout (float, optional): The dropout probability (default: 0.1).
        device (torch.device, optional): The device to use (default: None).
        dtype (torch.dtype, optional): The data type to use (default: None).

    Attributes:
        dim_head (int): The dimension of each attention head.
        scale (float): The scaling factor for attention scores.
        heads (int): The number of attention heads.
        to_qkv (nn.Linear): Linear layer for projecting input to query, key, and value.
        to_out (nn.Linear): Linear layer for projecting attention output to the original embedding dimension.
        dropout (nn.Dropout): Dropout layer.

    """

    def __init__(
        self,
        embed_dim: int,
        num_heads: int = 4,
        dropout: float = 0.1,
        batch_first: bool = True,
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
    ):
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__()
        self.embed_dim = embed_dim
        self.batch_first = batch_first
        self.dim_head = embed_dim // num_heads
        self.scale = self.dim_head ** -0.5
        self.heads = num_heads
        hidden_dim = self.dim_head * num_heads
        self.to_qkv = nn.Linear(embed_dim, hidden_dim * 3, bias=False, **factory_kwargs)
        self.to_out = nn.Linear(hidden_dim, embed_dim, bias=False, **factory_kwargs)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x: torch.Tensor, is_causal: bool = True) -> torch.Tensor:
        
        r"""Forward pass of the multi-head self-attention module.

        Args:
            x (torch.Tensor): The input tensor of shape (batch_size, sequence_length, embed_dim).

        Returns:
            torch.Tensor: The output tensor of shape (batch_size, sequence_length, embed_dim).

        """
        if not self.batch_first:
            x = x.transpose(0, 1)
        b, n, _ = x.size()
        q, k, v = torch.chunk(self.to_qkv(x), chunks=3, dim=-1)
        q, k, v = map(lambda t: t.contiguous().view(b, self.heads, n, -1), (q, k, v))

        self.freqs_cis = precompute_freqs_cis(
                seq_len=n,
                n_elem=self.embed_dim // self.heads,
                base=10000,
                dtype=x.dtype,
            ).to(x.device)
        freqs_cis = self.freqs_cis[: x.shape[1]]
        # q = apply_rotary_emb(q, freqs_cis)
        # k = apply_rotary_emb(k, freqs_cis)
        out = torch.nn.functional.scaled_dot_product_attention(q, k, v, is_causal=is_causal)
        out = out.contiguous().view(b, n, -1)
        out = self.dropout(out)
        return self.to_out(out)


class Transformer(Module):
    r"""A transformer model.

    User is able to modify the attributes as needed. The architecture
    is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer,
    Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and
    Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
    Processing Systems, pages 6000-6010.

    Args:
        d_model: the number of expected features in the encoder/decoder inputs (default=512).
        nhead: the number of heads in the multiheadattention models (default=8).
        num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6).
        num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6).
        dim_feedforward: the dimension of the feedforward network model (default=2048).
        use_moe: if True, use MoE instead of linear layer for feedforward network (default=False).
        dropout: the dropout value (default=0.1).
        activation: the activation function of encoder/decoder intermediate layer, can be a string
            ("relu" or "gelu") or a unary callable. Default: relu
        custom_encoder: custom encoder (default=None).
        custom_decoder: custom decoder (default=None).
        layer_norm_eps: the eps value in layer normalization components (default=1e-5).
        batch_first: If ``True``, then the input and output tensors are provided
            as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
        norm_first: if ``True``, encoder and decoder layers will perform LayerNorms before
            other attention and feedforward operations, otherwise after. Default: ``False`` (after).
        bias: If set to ``False``, ``Linear`` and ``LayerNorm`` layers will not learn an additive
            bias. Default: ``True``.

    Examples::
        >>> transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
        >>> src = torch.rand((32, 512))
        >>> tgt = torch.rand((32, 512, 30000))
        >>> out = transformer_model(src, tgt)

    Note: A full example to apply nn.Transformer module for the word language model is available in
    https://github.com/pytorch/examples/tree/master/word_language_model
    """

    def __init__(self, n_vocab: int = 30000, d_model: int = 512, nhead: int = 8, max_len: int = 5000,
                 num_decoder_layers: int = 6, dim_feedforward: int = 2048, use_moe: bool = False, 
                 num_experts: int = 16, dropout: float = 0.1, 
                 activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
                 layer_norm_eps: float = 1e-5, batch_first: bool = True, norm_first: bool = False,
                 bias: bool = True, device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__()
        torch._C._log_api_usage_once(f"torch.nn.modules.{self.__class__.__name__}")

        self.use_moe = use_moe

        self.input_emb = nn.Embedding(n_vocab, d_model, **factory_kwargs)
        self.pos_encoder = PositionalEncoding(d_model, dropout, max_len).to(device)

        # Load the FLAN-T5 encoder
        self.encoder = T5EncoderModel.from_pretrained("google/flan-t5-base").to(device)
        # Freeze the encoder
        for param in self.encoder.parameters():
            param.requires_grad = False

        decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, use_moe, num_experts, dropout,
                                                activation, layer_norm_eps, batch_first, norm_first,
                                                bias, **factory_kwargs)
        decoder_norm = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
        self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, use_moe, decoder_norm)

        self.projection = nn.Linear(d_model, n_vocab).to(device)

        self._reset_parameters()

        self.d_model = d_model
        self.nhead = nhead

        self.batch_first = batch_first

    def forward(self, src: Tensor, src_mask: Tensor, tgt: Tensor, memory_mask: Optional[Tensor] = None,
                memory_key_padding_mask: Optional[Tensor] = None, tgt_is_causal: bool = True,
                memory_is_causal: bool = False) -> Tensor:
        r"""Take in and process masked source/target sequences.

        .. note::

            If a boolean tensor is provided for any of the [src/tgt/memory]_mask arguments, positions with a ``True`` value are
            not allowed to participate in the attention,
            which is the opposite of the definition for :attr:`attn_mask`
            in :func:`torch.nn.functional.scaled_dot_product_attention`.

        Args:
            src: the sequence to the encoder (required).
            src_attn_mask: the attention mask for the src sequence (required).
            tgt: the sequence to the decoder (required).
            tgt_mask: the additive mask for the tgt sequence (optional).
            memory_mask: the additive mask for the encoder output (optional).
            tgt_key_padding_mask: the Tensor mask for tgt keys per batch (optional).
            memory_key_padding_mask: the Tensor mask for memory keys per batch (optional).
            tgt_is_causal: If specified, applies a causal mask as ``tgt_mask``.
                Default: ``None``; try to detect a causal mask.
                Warning:
                ``tgt_is_causal`` provides a hint that ``tgt_mask`` is
                the causal mask. Providing incorrect hints can result in
                incorrect execution, including forward and backward
                compatibility.
            memory_is_causal: If specified, applies a causal mask as
                ``memory_mask``.
                Default: ``False``.
                Warning:
                ``memory_is_causal`` provides a hint that
                ``memory_mask`` is the causal mask. Providing incorrect
                hints can result in incorrect execution, including
                forward and backward compatibility.

        Shape:
            - src: :math:`(S, S)` for unbatched input, :math:`(S, N)` if `batch_first=False` or
              `(N, S)` if `batch_first=True`.
            - src_mask: :math:`(S, S)` or :math:`(N\cdot\text{num\_heads}, S, S)`.
            - tgt: :math:`(T, E)` for unbatched input, :math:`(T, N, E)` if `batch_first=False` or
              `(N, T, E)` if `batch_first=True`.
            - tgt_mask: :math:`(T, T)` or :math:`(N\cdot\text{num\_heads}, T, T)`.
            - memory_mask: :math:`(T, S)`.
            - src_key_padding_mask: :math:`(S)` for unbatched input otherwise :math:`(N, S)`.
            - tgt_key_padding_mask: :math:`(T)` for unbatched input otherwise :math:`(N, T)`.
            - memory_key_padding_mask: :math:`(S)` for unbatched input otherwise :math:`(N, S)`.

            Note: [src/tgt/memory]_mask ensures that position :math:`i` is allowed to attend the unmasked
            positions. If a BoolTensor is provided, positions with ``True``
            are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
            is provided, it will be added to the attention weight.
            [src/tgt/memory]_key_padding_mask provides specified elements in the key to be ignored by
            the attention. If a BoolTensor is provided, the positions with the
            value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.

            - output: :math:`(T, E)` for unbatched input, :math:`(T, N, E)` if `batch_first=False` or
              `(N, T, E)` if `batch_first=True`.

            Note: Due to the multi-head attention architecture in the transformer model,
            the output sequence length of a transformer is same as the input sequence
            (i.e. target) length of the decoder.

            where :math:`S` is the source sequence length, :math:`T` is the target sequence length, :math:`N` is the
            batch size, :math:`E` is the feature number

        Examples:
            >>> # xdoctest: +SKIP
            >>> output = transformer_model(src, tgt, src_mask=src_mask)
        """
        if src.dim() != tgt.dim():
            raise RuntimeError("the number of dimensions in src and tgt must be equal")

        memory = self.encoder(src, attention_mask=src_mask).last_hidden_state

        tgt = self.input_emb(tgt) * math.sqrt(self.d_model)
        tgt = self.pos_encoder(tgt)
        # tgt = tgt + tgt_pos
        
        if self.use_moe:
            with torch.cuda.amp.autocast(enabled =False):
                output, sum_total_aux_loss = self.decoder(tgt, memory, memory_mask=memory_mask,                                
                                    memory_key_padding_mask=memory_key_padding_mask,
                                    tgt_is_causal=tgt_is_causal, memory_is_causal=memory_is_causal)
        else:
            output = self.decoder(tgt, memory, memory_mask=memory_mask,                                
                                memory_key_padding_mask=memory_key_padding_mask,
                                tgt_is_causal=tgt_is_causal, memory_is_causal=memory_is_causal)
        
        output = self.projection(output)
        # output = F.log_softmax(output, dim=-1)

        if self.use_moe:
            return output, sum_total_aux_loss
        else:
            return output
        
    def generate(self, src: Tensor, src_mask: Tensor, max_len: int = 100, temperature: float = 1.0):
        ## ADD A START OF SEQUENCE TOKEN  <SS> token to the src tensor
        r"""Generate a sequence of tokens from the given inputs.

        Args:
            src: the sequence to the encoder (required).
            src_mask: the attention mask for the src sequence (required).
            max_len: the maximum length of the sequence to generate (default=100).
            temperature: the temperature for the softmax (default=1.0).

        Returns:
            torch.Tensor: The generated sequence of tokens.

        """
        if src.dim() != 2:
            raise RuntimeError("The src tensor should be 2-dimensional")
        tgt_fin = torch.full((src.size(0), 1), 1, dtype=torch.long, device=src.device)
        # values = [21631, 8, 10, 9, 6, 7, 17, 21632, 11474, 20626, 21151, 9426, 20627, 21143, 11476, 20640, 21143, 11477, 20655, 21145, 11476, 20669, 21145, 11477, 20683, 21145, 13527, 20697, 21146, 13529, 20712, 21145, 7013, 20769, 21143, 7006, 20769, 21143, 7006, 20769, 21141, 7009, 20769, 21143, 9426, 20797, 21144, 11474, 20797, 21173, 11476, 20812, 21144, 11477, 20826, 21145, 11476, 20840, 21145, 11477, 20855, 21145, 13527, 20869, 21144, 13529, 20883, 21143, 7006, 20940, 21139, 7013, 20940, 21140, 7006, 20940, 21147, 7009, 20940, 21147, 11474, 20969, 21144, 11474, 20969, 21170, 11476, 20983, 21144, 11477, 20997, 21145, 11476, 21012, 21144, 11477, 21026, 21144, 11479, 21040]
        # values_tensor = torch.tensor(values, dtype=torch.long, device=src.device)
        # tgt_fin = values_tensor.unsqueeze(0).repeat(src.size(0), 1)
        for i in tqdm(range(max_len)):
            max_index = tgt_fin.max()
            # assert max_index < 21634, "tgt_fin contains index out of range. Adjust n_vocab or fix tgt_fin indices."
            tgt = tgt_fin
            if self.use_moe:
                output, _ = self.froward(src, src_mask, tgt, memory_mask=None,                                
                                memory_key_padding_mask=None,
                                tgt_is_causal=True, memory_is_causal=False)
            else:
                output = self.forward(src, src_mask, tgt, memory_mask=None,                                
                                      memory_key_padding_mask=None,
                                      tgt_is_causal=True, memory_is_causal=False)          
            # logits = self.projection(output)
            logits = output
            output = F.log_softmax(logits/temperature, dim=-1)
            output = output.view(-1, output.size(-1))
            next_tokens = torch.multinomial(torch.exp(output), 1)[-1] # taking the last logit and adding to the sequence
            tgt_fin = torch.cat((tgt_fin, next_tokens.unsqueeze(-1)), dim=1)
        return tgt_fin[:, 1:]

    @staticmethod
    def generate_square_subsequent_mask(
            sz: int,
            device: Optional[torch.device] = None,
            dtype: Optional[torch.dtype] = None,
    ) -> Tensor:
        r"""Generate a square causal mask for the sequence.

        The masked positions are filled with float('-inf'). Unmasked positions are filled with float(0.0).
        """
        return _generate_square_subsequent_mask(sz, dtype=dtype, device=device)


    def _reset_parameters(self):
        r"""Initiate parameters in the transformer model."""
        for p in self.parameters():
            if p.dim() > 1:
                xavier_uniform_(p)




class TransformerEncoder(Module):
    r"""TransformerEncoder is a stack of N encoder layers.

    Users can build the BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.

    Args:
        encoder_layer: an instance of the TransformerEncoderLayer() class (required).
        num_layers: the number of sub-encoder-layers in the encoder (required).
        norm: the layer normalization component (optional).
        enable_nested_tensor: if True, input will automatically convert to nested tensor
            (and convert back on output). This will improve the overall performance of
            TransformerEncoder when padding rate is high. Default: ``True`` (enabled).

    Examples::
        >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
        >>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
        >>> src = torch.rand(10, 32, 512)
        >>> out = transformer_encoder(src)
    """

    __constants__ = ['norm']

    def __init__(
        self,
        encoder_layer: "TransformerEncoderLayer",
        num_layers: int,
        norm: Optional[Module] = None,
        enable_nested_tensor: bool = True,
        mask_check: bool = True
    ) -> None:
        super().__init__()
        torch._C._log_api_usage_once(f"torch.nn.modules.{self.__class__.__name__}")
        self.layers = _get_clones(encoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm
        # this attribute saves the value providedat object construction
        self.enable_nested_tensor = enable_nested_tensor
        # this attribute controls whether nested tensors are used
        self.use_nested_tensor = enable_nested_tensor
        self.mask_check = mask_check

        enc_layer = "encoder_layer"
        why_not_sparsity_fast_path = ''
        if not isinstance(encoder_layer, torch.nn.TransformerEncoderLayer):
            why_not_sparsity_fast_path = f"{enc_layer} was not TransformerEncoderLayer"
        elif encoder_layer.norm_first :
            why_not_sparsity_fast_path = f"{enc_layer}.norm_first was True"
        elif not encoder_layer.self_attn.batch_first:
            why_not_sparsity_fast_path = (f"{enc_layer}.self_attn.batch_first was not True" +
                                          "(use batch_first for better inference performance)")
        elif not encoder_layer.self_attn._qkv_same_embed_dim:
            why_not_sparsity_fast_path = f"{enc_layer}.self_attn._qkv_same_embed_dim was not True"
        elif encoder_layer.self_attn.in_proj_bias is None:
            why_not_sparsity_fast_path = f"{enc_layer}.self_attn was passed bias=False"
        elif not encoder_layer.activation_relu_or_gelu:
            why_not_sparsity_fast_path = f"{enc_layer}.activation_relu_or_gelu was not True"
        elif not (encoder_layer.norm1.eps == encoder_layer.norm2.eps) :
            why_not_sparsity_fast_path = f"{enc_layer}.norm1.eps was not equal to {enc_layer}.norm2.eps"
        elif encoder_layer.self_attn.num_heads % 2 == 1:
            why_not_sparsity_fast_path = f"{enc_layer}.self_attn.num_heads is odd"

        if enable_nested_tensor and why_not_sparsity_fast_path:
            warnings.warn(f"enable_nested_tensor is True, but self.use_nested_tensor is False because {why_not_sparsity_fast_path}")
            self.use_nested_tensor = False



    def forward(
            self,
            src: Tensor,
            mask: Optional[Tensor] = None,
            src_key_padding_mask: Optional[Tensor] = None,
            is_causal: Optional[bool] = None) -> Tensor:
        r"""Pass the input through the encoder layers in turn.

        Args:
            src: the sequence to the encoder (required).
            mask: the mask for the src sequence (optional).
            src_key_padding_mask: the mask for the src keys per batch (optional).
            is_causal: If specified, applies a causal mask as ``mask``.
                Default: ``None``; try to detect a causal mask.
                Warning:
                ``is_causal`` provides a hint that ``mask`` is the
                causal mask. Providing incorrect hints can result in
                incorrect execution, including forward and backward
                compatibility.

        Shape:
            see the docs in :class:`~torch.nn.Transformer`.
        """
        src_key_padding_mask = F._canonical_mask(
            mask=src_key_padding_mask,
            mask_name="src_key_padding_mask",
            other_type=F._none_or_dtype(mask),
            other_name="mask",
            target_type=src.dtype
        )

        mask = F._canonical_mask(
            mask=mask,
            mask_name="mask",
            other_type=None,
            other_name="",
            target_type=src.dtype,
            check_other=False,
        )

        output = src
        convert_to_nested = False
        first_layer = self.layers[0]
        src_key_padding_mask_for_layers = src_key_padding_mask
        why_not_sparsity_fast_path = ''
        str_first_layer = "self.layers[0]"
        batch_first = first_layer.self_attn.batch_first
        # is_fastpath_enabled = torch.backends.mha.get_fastpath_enabled()

        # if not is_fastpath_enabled:
        #     why_not_sparsity_fast_path = "torch.backends.mha.get_fastpath_enabled() was not True"
        if not hasattr(self, "use_nested_tensor"):
            why_not_sparsity_fast_path = "use_nested_tensor attribute not present"
        elif not self.use_nested_tensor:
            why_not_sparsity_fast_path = "self.use_nested_tensor (set in init) was not True"
        elif first_layer.training:
            why_not_sparsity_fast_path = f"{str_first_layer} was in training mode"
        elif not src.dim() == 3:
            why_not_sparsity_fast_path = f"input not batched; expected src.dim() of 3 but got {src.dim()}"
        elif src_key_padding_mask is None:
            why_not_sparsity_fast_path = "src_key_padding_mask was None"
        elif (((not hasattr(self, "mask_check")) or self.mask_check)
                and not torch._nested_tensor_from_mask_left_aligned(src, src_key_padding_mask.logical_not())):
            why_not_sparsity_fast_path = "mask_check enabled, and src and src_key_padding_mask was not left aligned"
        elif output.is_nested:
            why_not_sparsity_fast_path = "NestedTensor input is not supported"
        elif mask is not None:
            why_not_sparsity_fast_path = "src_key_padding_mask and mask were both supplied"
        elif torch.is_autocast_enabled():
            why_not_sparsity_fast_path = "autocast is enabled"

        if not why_not_sparsity_fast_path:
            tensor_args = (
                src,
                first_layer.self_attn.in_proj_weight,
                first_layer.self_attn.in_proj_bias,
                first_layer.self_attn.out_proj.weight,
                first_layer.self_attn.out_proj.bias,
                first_layer.norm1.weight,
                first_layer.norm1.bias,
                first_layer.norm2.weight,
                first_layer.norm2.bias,
                first_layer.linear1.weight,
                first_layer.linear1.bias,
                first_layer.linear2.weight,
                first_layer.linear2.bias,
            )
            _supported_device_type = ["cpu", "cuda", torch.utils.backend_registration._privateuse1_backend_name]
            if torch.overrides.has_torch_function(tensor_args):
                why_not_sparsity_fast_path = "some Tensor argument has_torch_function"
            elif src.device.type not in _supported_device_type:
                why_not_sparsity_fast_path = f"src device is neither one of {_supported_device_type}"
            elif torch.is_grad_enabled() and any(x.requires_grad for x in tensor_args):
                why_not_sparsity_fast_path = ("grad is enabled and at least one of query or the "
                                              "input/output projection weights or biases requires_grad")

            if (not why_not_sparsity_fast_path) and (src_key_padding_mask is not None):
                convert_to_nested = True
                output = torch._nested_tensor_from_mask(output, src_key_padding_mask.logical_not(), mask_check=False)
                src_key_padding_mask_for_layers = None

        seq_len = _get_seq_len(src, batch_first)
        is_causal = _detect_is_causal_mask(mask, is_causal, seq_len)

        for mod in self.layers:
            output = mod(output, src_mask=mask, is_causal=is_causal, src_key_padding_mask=src_key_padding_mask_for_layers)

        if convert_to_nested:
            output = output.to_padded_tensor(0., src.size())

        if self.norm is not None:
            output = self.norm(output)

        return output




class TransformerDecoder(Module):
    r"""TransformerDecoder is a stack of N decoder layers.

    Args:
        decoder_layer: an instance of the TransformerDecoderLayer() class (required).
        num_layers: the number of sub-decoder-layers in the decoder (required).
        norm: the layer normalization component (optional).

    Examples::
        >>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
        >>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=6)
        >>> memory = torch.rand(10, 32, 512)
        >>> tgt = torch.rand(20, 32, 512)
        >>> out = transformer_decoder(tgt, memory)
    """

    __constants__ = ['norm']

    def __init__(
        self,
        decoder_layer: "TransformerDecoderLayer",
        num_layers: int,
        use_moe: bool = False,
        norm: Optional[Module] = None
    ) -> None:
        super().__init__()
        torch._C._log_api_usage_once(f"torch.nn.modules.{self.__class__.__name__}")
        self.layers = _get_clones(decoder_layer, num_layers)
        self.num_layers = num_layers
        self.use_moe = use_moe
        self.norm = norm


    def forward(self, tgt: Tensor, memory: Tensor, tgt_mask: Optional[Tensor] = None,
                memory_mask: Optional[Tensor] = None,
                memory_key_padding_mask: Optional[Tensor] = None, tgt_is_causal: Optional[bool] = None,
                memory_is_causal: bool = False) -> Tensor:
        r"""Pass the inputs (and mask) through the decoder layer in turn.

        Args:
            tgt: the sequence to the decoder (required).
            memory: the sequence from the last layer of the encoder (required).
            tgt_mask: the mask for the tgt sequence (optional).
            memory_mask: the mask for the memory sequence (optional).
            memory_key_padding_mask: the mask for the memory keys per batch (optional).
            tgt_is_causal: If specified, applies a causal mask as ``tgt mask``.
                Default: ``None``; try to detect a causal mask.
                Warning:
                ``tgt_is_causal`` provides a hint that ``tgt_mask`` is
                the causal mask. Providing incorrect hints can result in
                incorrect execution, including forward and backward
                compatibility.
            memory_is_causal: If specified, applies a causal mask as
                ``memory mask``.
                Default: ``False``.
                Warning:
                ``memory_is_causal`` provides a hint that
                ``memory_mask`` is the causal mask. Providing incorrect
                hints can result in incorrect execution, including
                forward and backward compatibility.

        Shape:
            see the docs in :class:`~torch.nn.Transformer`.
        """
        output = tgt

        seq_len = _get_seq_len(tgt, self.layers[0].self_attn.batch_first)
        tgt_is_causal = _detect_is_causal_mask(tgt_mask, tgt_is_causal, seq_len)
        # print(f'target is causal: {tgt_is_causal}')

        if self.use_moe:
            sum_total_aux_loss = 0
            for mod in self.layers:
                output, total_aux_loss, balance_loss, router_z_loss = mod(output, memory,
                             memory_mask=memory_mask,
                             memory_key_padding_mask=memory_key_padding_mask,
                             tgt_is_causal=tgt_is_causal,
                             memory_is_causal=memory_is_causal)
                sum_total_aux_loss += total_aux_loss
        else:
            for mod in self.layers:
                output = mod(output, memory,
                            memory_mask=memory_mask,                            
                            memory_key_padding_mask=memory_key_padding_mask,
                            tgt_is_causal=tgt_is_causal,
                            memory_is_causal=memory_is_causal)

        if self.norm is not None:
            output = self.norm(output)

        if self.use_moe:
            return output, sum_total_aux_loss
        else:
            return output



class TransformerEncoderLayer(Module):
    r"""TransformerEncoderLayer is made up of self-attn and feedforward network.

    This standard encoder layer is based on the paper "Attention Is All You Need".
    Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
    Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
    Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
    in a different way during application.

    TransformerEncoderLayer can handle either traditional torch.tensor inputs,
    or Nested Tensor inputs.  Derived classes are expected to similarly accept
    both input formats.  (Not all combinations of inputs are currently
    supported by TransformerEncoderLayer while Nested Tensor is in prototype
    state.)

    If you are implementing a custom layer, you may derive it either from
    the Module or TransformerEncoderLayer class.  If your custom layer
    supports both torch.Tensors and Nested Tensors inputs, make its
    implementation a derived class of TransformerEncoderLayer. If your custom
    Layer supports only torch.Tensor inputs, derive its implementation from
    Module.

    Args:
        d_model: the number of expected features in the input (required).
        nhead: the number of heads in the multiheadattention models (required).
        dim_feedforward: the dimension of the feedforward network model (default=2048).
        dropout: the dropout value (default=0.1).
        activation: the activation function of the intermediate layer, can be a string
            ("relu" or "gelu") or a unary callable. Default: relu
        layer_norm_eps: the eps value in layer normalization components (default=1e-5).
        batch_first: If ``True``, then the input and output tensors are provided
            as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
        norm_first: if ``True``, layer norm is done prior to attention and feedforward
            operations, respectively. Otherwise it's done after. Default: ``False`` (after).
        bias: If set to ``False``, ``Linear`` and ``LayerNorm`` layers will not learn an additive
            bias. Default: ``True``.

    Examples::
        >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
        >>> src = torch.rand(10, 32, 512)
        >>> out = encoder_layer(src)

    Alternatively, when ``batch_first`` is ``True``:
        >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True)
        >>> src = torch.rand(32, 10, 512)
        >>> out = encoder_layer(src)

    Fast path:
        forward() will use a special optimized implementation described in
        `FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness`_ if all of the following
        conditions are met:

        - Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor
          argument ``requires_grad``
        - training is disabled (using ``.eval()``)
        - batch_first is ``True`` and the input is batched (i.e., ``src.dim() == 3``)
        - activation is one of: ``"relu"``, ``"gelu"``, ``torch.functional.relu``, or ``torch.functional.gelu``
        - at most one of ``src_mask`` and ``src_key_padding_mask`` is passed
        - if src is a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_, neither ``src_mask``
          nor ``src_key_padding_mask`` is passed
        - the two ``LayerNorm`` instances have a consistent ``eps`` value (this will naturally be the case
          unless the caller has manually modified one without modifying the other)

        If the optimized implementation is in use, a
        `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be
        passed for ``src`` to represent padding more efficiently than using a padding
        mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ will be
        returned, and an additional speedup proportional to the fraction of the input that
        is padding can be expected.

        .. _`FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness`:
         https://arxiv.org/abs/2205.14135

    """

    __constants__ = ['norm_first']

    def __init__(self, d_model: int, nhead: int, dim_feedforward: int = 2048, dropout: float = 0.1,
                 activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
                 layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False,
                 bias: bool = True, device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__()
        self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout,
                                            bias=bias, batch_first=batch_first,
                                            **factory_kwargs)
        # Implementation of Feedforward model
        self.linear1 = Linear(d_model, dim_feedforward, bias=bias, **factory_kwargs)
        self.dropout = Dropout(dropout)
        self.linear2 = Linear(dim_feedforward, d_model, bias=bias, **factory_kwargs)

        self.norm_first = norm_first
        self.norm1 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
        self.norm2 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
        self.dropout1 = Dropout(dropout)
        self.dropout2 = Dropout(dropout)

        # Legacy string support for activation function.
        if isinstance(activation, str):
            activation = _get_activation_fn(activation)

        # We can't test self.activation in forward() in TorchScript,
        # so stash some information about it instead.
        if activation is F.relu or isinstance(activation, torch.nn.ReLU):
            self.activation_relu_or_gelu = 1
        elif activation is F.gelu or isinstance(activation, torch.nn.GELU):
            self.activation_relu_or_gelu = 2
        else:
            self.activation_relu_or_gelu = 0
        self.activation = activation

    def __setstate__(self, state):
        super().__setstate__(state)
        if not hasattr(self, 'activation'):
            self.activation = F.relu



    def forward(
            self,
            src: Tensor,
            src_mask: Optional[Tensor] = None,
            src_key_padding_mask: Optional[Tensor] = None,
            is_causal: bool = False) -> Tensor:
        r"""Pass the input through the encoder layer.

        Args:
            src: the sequence to the encoder layer (required).
            src_mask: the mask for the src sequence (optional).
            src_key_padding_mask: the mask for the src keys per batch (optional).
            is_causal: If specified, applies a causal mask as ``src mask``.
                Default: ``False``.
                Warning:
                ``is_causal`` provides a hint that ``src_mask`` is the
                causal mask. Providing incorrect hints can result in
                incorrect execution, including forward and backward
                compatibility.

        Shape:
            see the docs in :class:`~torch.nn.Transformer`.
        """
        src_key_padding_mask = F._canonical_mask(
            mask=src_key_padding_mask,
            mask_name="src_key_padding_mask",
            other_type=F._none_or_dtype(src_mask),
            other_name="src_mask",
            target_type=src.dtype
        )

        src_mask = F._canonical_mask(
            mask=src_mask,
            mask_name="src_mask",
            other_type=None,
            other_name="",
            target_type=src.dtype,
            check_other=False,
        )

        # is_fastpath_enabled = torch.backends.mha.get_fastpath_enabled()

        # see Fig. 1 of https://arxiv.org/pdf/2002.04745v1.pdf
        why_not_sparsity_fast_path = ''
        # if not is_fastpath_enabled:
        #     why_not_sparsity_fast_path = "torch.backends.mha.get_fastpath_enabled() was not True"
        if not src.dim() == 3:
            why_not_sparsity_fast_path = f"input not batched; expected src.dim() of 3 but got {src.dim()}"
        elif self.training:
            why_not_sparsity_fast_path = "training is enabled"
        elif not self.self_attn.batch_first:
            why_not_sparsity_fast_path = "self_attn.batch_first was not True"
        elif self.self_attn.in_proj_bias is None:
            why_not_sparsity_fast_path = "self_attn was passed bias=False"
        elif not self.self_attn._qkv_same_embed_dim:
            why_not_sparsity_fast_path = "self_attn._qkv_same_embed_dim was not True"
        elif not self.activation_relu_or_gelu:
            why_not_sparsity_fast_path = "activation_relu_or_gelu was not True"
        elif not (self.norm1.eps == self.norm2.eps):
            why_not_sparsity_fast_path = "norm1.eps is not equal to norm2.eps"
        elif src.is_nested and (src_key_padding_mask is not None or src_mask is not None):
            why_not_sparsity_fast_path = "neither src_key_padding_mask nor src_mask are not supported with NestedTensor input"
        elif self.self_attn.num_heads % 2 == 1:
            why_not_sparsity_fast_path = "num_head is odd"
        elif torch.is_autocast_enabled():
            why_not_sparsity_fast_path = "autocast is enabled"
        if not why_not_sparsity_fast_path:
            tensor_args = (
                src,
                self.self_attn.in_proj_weight,
                self.self_attn.in_proj_bias,
                self.self_attn.out_proj.weight,
                self.self_attn.out_proj.bias,
                self.norm1.weight,
                self.norm1.bias,
                self.norm2.weight,
                self.norm2.bias,
                self.linear1.weight,
                self.linear1.bias,
                self.linear2.weight,
                self.linear2.bias,
            )

            # We have to use list comprehensions below because TorchScript does not support
            # generator expressions.
            _supported_device_type = ["cpu", "cuda", torch.utils.backend_registration._privateuse1_backend_name]
            if torch.overrides.has_torch_function(tensor_args):
                why_not_sparsity_fast_path = "some Tensor argument has_torch_function"
            elif not all((x.device.type in _supported_device_type) for x in tensor_args):
                why_not_sparsity_fast_path = ("some Tensor argument's device is neither one of "
                                              f"{_supported_device_type}")
            elif torch.is_grad_enabled() and any(x.requires_grad for x in tensor_args):
                why_not_sparsity_fast_path = ("grad is enabled and at least one of query or the "
                                              "input/output projection weights or biases requires_grad")

            if not why_not_sparsity_fast_path:
                merged_mask, mask_type = self.self_attn.merge_masks(src_mask, src_key_padding_mask, src)
                return torch._transformer_encoder_layer_fwd(
                    src,
                    self.self_attn.embed_dim,
                    self.self_attn.num_heads,
                    self.self_attn.in_proj_weight,
                    self.self_attn.in_proj_bias,
                    self.self_attn.out_proj.weight,
                    self.self_attn.out_proj.bias,
                    self.activation_relu_or_gelu == 2,
                    self.norm_first,
                    self.norm1.eps,
                    self.norm1.weight,
                    self.norm1.bias,
                    self.norm2.weight,
                    self.norm2.bias,
                    self.linear1.weight,
                    self.linear1.bias,
                    self.linear2.weight,
                    self.linear2.bias,
                    merged_mask,
                    mask_type,
                )


        x = src
        if self.norm_first:
            x = x + self._sa_block(self.norm1(x), src_mask, src_key_padding_mask, is_causal=is_causal)
            x = x + self._ff_block(self.norm2(x))
        else:
            x = self.norm1(x + self._sa_block(x, src_mask, src_key_padding_mask, is_causal=is_causal))
            x = self.norm2(x + self._ff_block(x))

        return x


    # self-attention block
    def _sa_block(self, x: Tensor,
                  attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], is_causal: bool = False) -> Tensor:
        x = self.self_attn(x, x, x,
                           attn_mask=attn_mask,
                           key_padding_mask=key_padding_mask,
                           need_weights=False, is_causal=is_causal)[0]
        return self.dropout1(x)

    # feed forward block
    def _ff_block(self, x: Tensor) -> Tensor:
        x = self.linear2(self.dropout(self.activation(self.linear1(x))))
        return self.dropout2(x)




class TransformerDecoderLayer(Module):
    r"""TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network.

    This standard decoder layer is based on the paper "Attention Is All You Need".
    Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
    Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
    Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
    in a different way during application.

    Args:
        d_model: the number of expected features in the input (required).
        nhead: the number of heads in the multiheadattention models (required).
        dim_feedforward: the dimension of the feedforward network model (default=2048).
        dropout: the dropout value (default=0.1).
        activation: the activation function of the intermediate layer, can be a string
            ("relu" or "gelu") or a unary callable. Default: relu
        layer_norm_eps: the eps value in layer normalization components (default=1e-5).
        batch_first: If ``True``, then the input and output tensors are provided
            as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
        norm_first: if ``True``, layer norm is done prior to self attention, multihead
            attention and feedforward operations, respectively. Otherwise it's done after.
            Default: ``False`` (after).
        bias: If set to ``False``, ``Linear`` and ``LayerNorm`` layers will not learn an additive
            bias. Default: ``True``.

    Examples::
        >>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
        >>> memory = torch.rand(10, 32, 512)
        >>> tgt = torch.rand(20, 32, 512)
        >>> out = decoder_layer(tgt, memory)

    Alternatively, when ``batch_first`` is ``True``:
        >>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8, batch_first=True)
        >>> memory = torch.rand(32, 10, 512)
        >>> tgt = torch.rand(32, 20, 512)
        >>> out = decoder_layer(tgt, memory)
    """

    __constants__ = ['norm_first']

    def __init__(self, d_model: int, nhead: int, dim_feedforward: int = 2048, use_moe: bool = False, num_experts: int = 16,
                 dropout: float = 0.1, activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
                 layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False,
                 bias: bool = True, device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__()

        self.self_attn = MultiHeadSelfAttention(d_model, nhead, dropout=dropout, batch_first=batch_first, **factory_kwargs) 
        self.multihead_attn = MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first,
                                                 bias=bias, **factory_kwargs)
        self.use_moe = use_moe

        if use_moe:
            self.moe = MoE(
                dim = d_model,
                num_experts = num_experts,      # increase the experts (# parameters) of your model without increasing computation
                gating_top_n = 2,               # default to top 2 gating, but can also be more (3 was tested in the paper with a lower threshold)
                threshold_train = 0.2,          # at what threshold to accept a token to be routed to second expert and beyond - 0.2 was optimal for 2 expert routing, and apparently should be lower for 3
                threshold_eval = 0.2,
                capacity_factor_train = 1.25,   # experts have fixed capacity per batch. we need some extra capacity in case gating is not perfectly balanced.
                capacity_factor_eval = 2.,      # capacity_factor_* should be set to a value >=1
                balance_loss_coef = 1e-2,       # multiplier on the auxiliary expert balancing auxiliary loss
                router_z_loss_coef = 1e-3,      # loss weight for router z-loss
            ).to(device)
            self.moe_block = SparseMoEBlock(
                self.moe,
                add_ff_before = True,
                add_ff_after = True
            ).to(device)
        else:
            # Implementation of Feedforward model
            self.linear1 = Linear(d_model, dim_feedforward, bias=bias, **factory_kwargs)
            self.dropout = Dropout(dropout)
            self.linear2 = Linear(dim_feedforward, d_model, bias=bias, **factory_kwargs)

        self.norm_first = norm_first
        self.norm1 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
        self.norm2 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
        self.norm3 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
        self.dropout1 = Dropout(dropout)
        self.dropout2 = Dropout(dropout)
        self.dropout3 = Dropout(dropout)

        # Legacy string support for activation function.
        if isinstance(activation, str):
            self.activation = _get_activation_fn(activation)
        else:
            self.activation = activation

    def __setstate__(self, state):
        if 'activation' not in state:
            state['activation'] = F.relu
        super().__setstate__(state)


    def forward(
        self,
        tgt: Tensor,
        memory: Tensor,
        memory_mask: Optional[Tensor] = None,
        memory_key_padding_mask: Optional[Tensor] = None,
        tgt_is_causal: bool = False,
        memory_is_causal: bool = False,
    ) -> Tensor:
        r"""Pass the inputs (and mask) through the decoder layer.

        Args:
            tgt: the sequence to the decoder layer (required).
            memory: the sequence from the last layer of the encoder (required).
            memory_mask: the mask for the memory sequence (optional).
            memory_key_padding_mask: the mask for the memory keys per batch (optional).
            tgt_is_causal: If specified, applies a causal mask as ``tgt mask``.
                Default: ``False``.
                Warning:
                ``tgt_is_causal`` provides a hint that ``tgt_mask`` is
                the causal mask. Providing incorrect hints can result in
                incorrect execution, including forward and backward
                compatibility.
            memory_is_causal: If specified, applies a causal mask as
                ``memory mask``.
                Default: ``False``.
                Warning:
                ``memory_is_causal`` provides a hint that
                ``memory_mask`` is the causal mask. Providing incorrect
                hints can result in incorrect execution, including
                forward and backward compatibility.

        Shape:
            see the docs in :class:`~torch.nn.Transformer`.
        """
        # see Fig. 1 of https://arxiv.org/pdf/2002.04745v1.pdf

        x = tgt
        # print(f'target is causal: {tgt_is_causal}')
        if self.norm_first:
            x = x + self._sa_block(self.norm1(x), tgt_is_causal)
            x = x + self._mha_block(self.norm2(x), memory, memory_mask, memory_key_padding_mask, memory_is_causal)
            if self.use_moe:
                m, total_aux_loss, balance_loss, router_z_loss = self.moe_block(x)
                x = x + m
            else:
                x = x + self._ff_block(self.norm3(x))
        else:
            x = self.norm1(x + self._sa_block(x, tgt_is_causal))
            x = self.norm2(x + self._mha_block(x, memory, memory_mask, memory_key_padding_mask, memory_is_causal))
            if self.use_moe:
                m, total_aux_loss, balance_loss, router_z_loss = self.moe_block(x)
                x = x + m
            else:
                x = self.norm3(x + self._ff_block(x))

        if self.use_moe:
            return x, total_aux_loss, balance_loss, router_z_loss
        else:
            return x


    # self-attention block
    def _sa_block(self, x: Tensor,
                  is_causal: bool = False) -> Tensor:
        x = self.self_attn(x, is_causal=is_causal)
        return self.dropout1(x)

    # multihead attention block
    def _mha_block(self, x: Tensor, mem: Tensor,
                   attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], is_causal: bool = False) -> Tensor:
        x = self.multihead_attn(x, mem, mem,
                                attn_mask=attn_mask,
                                key_padding_mask=key_padding_mask,
                                is_causal=is_causal,
                                need_weights=False)[0]
        return self.dropout2(x)

    # feed forward block
    def _ff_block(self, x: Tensor) -> Tensor:
        x = self.linear2(self.dropout(self.activation(self.linear1(x))))
        return self.dropout3(x)



def _get_clones(module, N):
    # FIXME: copy.deepcopy() is not defined on nn.module
    return ModuleList([copy.deepcopy(module) for i in range(N)])


def _get_activation_fn(activation: str) -> Callable[[Tensor], Tensor]:
    if activation == "relu":
        return F.relu
    elif activation == "gelu":
        return F.gelu

    raise RuntimeError(f"activation should be relu/gelu, not {activation}")


def _detect_is_causal_mask(
        mask: Optional[Tensor],
        is_causal: Optional[bool] = None,
        size: Optional[int] = None,
) -> bool:
    """Return whether the given attention mask is causal.

    Warning:
    If ``is_causal`` is not ``None``, its value will be returned as is.  If a
    user supplies an incorrect ``is_causal`` hint,

    ``is_causal=False`` when the mask is in fact a causal attention.mask
       may lead to reduced performance relative to what would be achievable
       with ``is_causal=True``;
    ``is_causal=True`` when the mask is in fact not a causal attention.mask
       may lead to incorrect and unpredictable execution - in some scenarios,
       a causal mask may be applied based on the hint, in other execution
       scenarios the specified mask may be used.  The choice may not appear
       to be deterministic, in that a number of factors like alignment,
       hardware SKU, etc influence the decision whether to use a mask or
       rely on the hint.
    ``size`` if not None, check whether the mask is a causal mask of the provided size
       Otherwise, checks for any causal mask.
    """
    # Prevent type refinement
    make_causal = (is_causal is True)

    if is_causal is None and mask is not None:
        sz = size if size is not None else mask.size(-2)
        causal_comparison = _generate_square_subsequent_mask(
            sz, device=mask.device, dtype=mask.dtype)

        # Do not use `torch.equal` so we handle batched masks by
        # broadcasting the comparison.
        if mask.size() == causal_comparison.size():
            make_causal = bool((mask == causal_comparison).all())
        else:
            make_causal = False

    return make_causal

def check_instruments(genereated_seq):
    ins_present = []
    ins_count = 0
    instrument_list = ["piano", "chromatic", "organ", "guitar", "bass", "strings", "ensemble", "brass", "reed", "drum", "pipe", "synth_lead", "synth_pad", "synth_effect", "ethnic", "percussive", "sfx"]
    for token in genereated_seq:
        try:
            ins, pitch, vel = token
            # print(str(ins))
        except ValueError:
            try:
                ins, pitch = token
            except ValueError:
                ins = token
        if str(ins) in instrument_list:
            # print('coming here')
            
            if ('prefix', 'instrument', str(ins)) not in ins_present and ins_count < 15:
                ins_count += 1
                print(f'adding instrument {ins}')
                ins_present.append(('prefix', 'instrument', str(ins)))
    if ins_present != []:
        genereated_seq = ins_present + ['<S>']+ genereated_seq +['<E>']
    else:
        genereated_seq = genereated_seq +['<E>']
    print(genereated_seq)
    return genereated_seq 

def process_caption(gpu_id, captions, model, tokenizer, r_tokenizer):
    device = gpu_id
    torch.cuda.set_device(gpu_id)
    model.to(gpu_id)
    model.eval()
    for caption in captions:
        src = caption['caption']
        location = caption['location']
        #src = "A cinematic electronic soundtrack that evokes an epic and dark atmosphere, featuring cello, contrabass, and drums. The song is set in A minor with a moderate tempo and a 4/4 time signature, creating an emotional and action-packed ambiance suitable for film."
        '''
        example 1: "A cheerful and melodic pop Christmas song featuring piano, acoustic guitar, vibraphone, bass, and drums, set in the key of Eb minor with a fast tempo of 123 bpm and a 4/4 time signature, creating a joyful and relaxing atmosphere."lmd_full/1/1b9f5f325c2080d345d877f590aa3dbe.mid
        example 2: "A melodic electronic song with ambient elements, featuring piano, acoustic guitar, alto saxophone, string ensemble, and electric bass. Set in G minor with a 4/4 time signature, it moves at a lively Presto tempo. The composition evokes a blend of relaxation and darkness, with hints of happiness and a meditative quality."lmd_full/1/152891ac63017b234c33e75e4a4a28c5.mid
        example 3: "This motivational electronic and pop song features a clean electric guitar, rock organ, synth voice, acoustic guitar, and vibraphone, creating a melodic and uplifting atmosphere. Set in the key of G# minor with a 4/4 time signature, the track moves at an energetic Allegro tempo of 120 beats per minute. The chord progression of Bbm7 and F# adds to the song's inspiring and corporate feel." lmd_full/1/14347e50e9e8149a9da09f49b188180b.mid
        example 4: "This short electronic song in C minor features a brass section, string ensemble, tenor saxophone, clean electric guitar, and slap bass, creating a melodic and slightly dark atmosphere. With a tempo of 124 BPM (Allegro) and a 4/4 time signature, the track incorporates a chord progression of C7/E, Eb6, and Bbm6, adding a touch of corporate and motivational vibes to the overall composition." lmd_full/1/1dc4cd50a5509d8042d27d80bc7e668e.mid
        example 5: "An energetic and melodic electronic trance track with a space and retro vibe, featuring drums, distortion guitar, flute, synth bass, and slap bass. Set in A minor with a fast tempo of 138 BPM, the song maintains a 4/4 time signature throughout its duration." lmd_full/3/3328b854ebe7a2fc9a746ede74c410ae.mid  
        example 6: "A short but energetic rock fragment in C minor, featuring overdriven guitars, electric bass, and drums, with a vivacious tempo of 155 BPM and a 4/4 time signature, evoking a blend of dark and melodic tones." lmd_full/4/4c2232688c5f869b8470a408d197f5e3.mid 
        example 7: "A classical piece with a cinematic flair, this composition is characterized by its fast tempo and 4/4 time signature. The soprano saxophone and flute take turns leading the melody, supported by the lush tones of the string ensemble, acoustic bass, and pan flute. Set in the key of F minor, the harmonic landscape is painted with the chords Gm7b5, Cm7b5, Fm7, Eaug, and Ab/Eb. The overall mood evokes images of film, with hints of Christmas, drama, documentary, and adventure." lmd_full/9/95bce1b489a11829b4fef39200291f60.mid 
        exmaple 8: "A slow, dark, and emotional classical piece featuring cello, violin, and viola, likely to be used in a dramatic film soundtrack. The composition is in the key of C minor with a 4/4 time signature, and the main chord progression consists of Cm, G, Cm, and Fm." lmd_full/a/a22aad98ecfe4b3d8a353c2a72132834.mid
        example 9: "A slow and emotional classical piece, likely used in a film soundtrack, featuring a church organ as the sole instrument. Written in the key of Eb major with a 3/4 time signature, it evokes a sense of drama and romance. The chord progression of Bb7, Eb, and Ab contributes to the relaxing atmosphere throughout the song." lmd_full/a/af4302a036c9df71e0435df9b08f8c4b.mid
        example 10: "A cinematic electronic soundtrack that evokes an epic and dark atmosphere, featuring cello, contrabass, and drums. The song is set in A minor with a moderate tempo and a 4/4 time signature, creating an emotional and action-packed ambiance suitable for film." lmd_full/d/d920b6f451d7a72ae06f154e7c06c4c1.mid
        '''
        inputs = tokenizer(src, return_tensors='pt', padding=True, truncation=True)
        input_ids = nn.utils.rnn.pad_sequence(inputs.input_ids, batch_first=True, padding_value=0)
        input_ids = input_ids.to(device)
        attention_mask =nn.utils.rnn.pad_sequence(inputs.attention_mask, batch_first=True, padding_value=0) 
        attention_mask = attention_mask.to(device)
        output = model.generate(input_ids, attention_mask,max_len=1000,temperature = 0.9)
        output_list = output[0].tolist()
        print(type(output_list))
        # generated_sequences = [dict_tokenizer[token] for token in output_list[0]]
        # generated_sequences = check_instruments(generated_sequences)
        # # generated_sequences = [('prefix', 'instrument', 'bass'), ('prefix', 'instrument', 'guitar'), ('prefix', 'instrument', 'piano'), ('prefix', 'instrument', 'guitar'), '<S>' ]+ generated_sequences +['<E>']
        # generated_sequences = [token for token in generated_sequences]# if token not in ["<SS>", "<S>", "<E>", "<SEP>"]]
        # # print("Generated sequences:", generated_sequences)
        # with open('../../generated_seq.pkl', 'wb') as f:
        #     pickle.dump(generated_sequences, f)
        # mid_dict = aria_tokenizer.detokenize(generated_sequences)
        # mid = mid_dict.to_midi()
        generated_midi = r_tokenizer.decode(output_list)
        # print(type(generated_midi))
        generated_midi.dump_midi(f"../res/{location}")

def test_generate():
    device = 'cuda'
    artifact_folder = '../artifacts'
    tokenizer_filepath = os.path.join(artifact_folder, "vocab_remi.pkl")
    caption_dataset_path = '/root/captions/train.json'
    print(f'caption_dataset_path: {caption_dataset_path}')
# Load the tokenizer dictionary
    with open(tokenizer_filepath, "rb") as f:
        r_tokenizer = pickle.load(f)
    vocab_size = len(r_tokenizer)#+1
    print("Vocab size: ", vocab_size)
    # print(tokenizer[2171])
    # d_model =
    # model = Transformer(vocab_size, 768, 8, 8000, 8, 1024, False, 8, device=device)
    model = Transformer(vocab_size, 768, 8, 2048, 18, 1024, False, 8, device=device)
    # model = DataParallel(model)
    model.load_state_dict(torch.load('/root/output_test_new/epoch_50/pytorch_model.bin', map_location=device))
    model.eval()
    tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
    
    '''
    # num_gpus = torch.cuda.device_count()
    # captions_per_gpu = len(captions) // num_gpus
    # processes = []
    # for i in range(num_gpus):
    #     start_idx = i * captions_per_gpu
    #     end_idx = (i + 1) * captions_per_gpu if i != num_gpus - 1 else len(captions)
    #     p = mp.Process(target=process_caption, args=(i, captions[start_idx:end_idx], model, tokenizer, r_tokenizer))
    #     p.start()
    #     processes.append(p)

    # for p in processes:
    #     p.join()
    '''
    # src = "This short electronic song in C minor features a brass section, string ensemble, tenor saxophone, clean electric guitar, and slap bass, creating a melodic and slightly dark atmosphere. With a tempo of 124 BPM (Allegro) and a 4/4 time signature, the track incorporates a chord progression of C7/E, Eb6, and Bbm6, adding a touch of corporate and motivational vibes to the overall composition."
    src="This motivational electronic and pop song features a clean electric guitar, rock organ, synth voice, acoustic guitar, and vibraphone, creating a melodic and uplifting atmosphere. Set in the key of G# minor with a 4/4 time signature, the track moves at an energetic Allegro tempo of 120 beats per minute. The chord progression of Bbm7 and F# adds to the song's inspiring and corporate feel."
    # src = "Played at 149 beats per minute in 2/4 time signature and the key of G major, classical piece with instruments: bassoon, clarinet, flute, horn, oboe, and trumpet."
    # src= 'Played at 114 beats per minute in 1/4 time signature and the key of g# minor, classical piece with the following instruments: clarinet, english horn, flute, horn, piccolo, trombone, and trumpet.'
    inputs = tokenizer(src, return_tensors='pt', padding=True, truncation=True)
    input_ids = nn.utils.rnn.pad_sequence(inputs.input_ids, batch_first=True, padding_value=0)
    input_ids = input_ids.to(device)
    attention_mask =nn.utils.rnn.pad_sequence(inputs.attention_mask, batch_first=True, padding_value=0) 
    attention_mask = attention_mask.to(device)
    output = model.generate(input_ids, attention_mask,max_len=5000,temperature = 0.9)
    output_list = output[0].tolist()
    generated_midi = r_tokenizer.decode(output_list)
    generated_midi.dump_midi(f"../../output_e3_epoch_50_new.mid")
    
if __name__ == "__main__":
    mp.set_start_method('spawn')
    test_generate()
    print("Done")