File size: 2,822 Bytes
8d0cf53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- trl
- orpo
- generated_from_trainer
model-index:
- name: mistral-orpo-mix-beta
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistral-orpo-mix-beta
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2152
- Rewards/chosen: -0.1113
- Rewards/rejected: -0.1461
- Rewards/accuracies: 0.6562
- Rewards/margins: 0.0348
- Logps/rejected: -1.4607
- Logps/chosen: -1.1130
- Logits/rejected: -2.4201
- Logits/chosen: -2.4178
- Nll Loss: 1.1711
- Log Odds Ratio: -0.6108
- Log Odds Chosen: 0.5395
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: inverse_sqrt
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:--------------:|:---------------:|
| 0.9961 | 1.0 | 211 | 0.9199 | -0.0831 | -0.1055 | 0.6302 | 0.0224 | -1.0547 | -0.8311 | -2.3542 | -2.3590 | 0.8774 | -0.6294 | 0.3896 |
| 0.4999 | 2.0 | 422 | 0.9813 | -0.0894 | -0.1184 | 0.6615 | 0.0290 | -1.1836 | -0.8937 | -2.5184 | -2.5177 | 0.9404 | -0.6012 | 0.4994 |
| 0.1899 | 3.0 | 633 | 1.2152 | -0.1113 | -0.1461 | 0.6562 | 0.0348 | -1.4607 | -1.1130 | -2.4201 | -2.4178 | 1.1711 | -0.6108 | 0.5395 |
### Framework versions
- Transformers 4.39.0
- Pytorch 2.1.1+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2
|