File size: 2,984 Bytes
d1e69a3
 
 
 
4b440da
d1e69a3
 
 
4b440da
 
 
 
 
d1e69a3
 
 
 
 
 
 
 
 
 
4b440da
d1e69a3
 
 
 
 
 
 
4b440da
 
 
d1e69a3
4b440da
 
d1e69a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- alignment-handbook
- trl
- orpo
- generated_from_trainer
- trl
- orpo
- generated_from_trainer
datasets:
- argilla/dpo-mix-7k
model-index:
- name: mistral-7b-orpo-alignment-handbook
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mistral-7b-orpo-alignment-handbook

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the argilla/dpo-mix-7k dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8562
- Rewards/chosen: -0.0394
- Rewards/rejected: -0.0485
- Rewards/accuracies: 0.6615
- Rewards/margins: 0.0091
- Logps/rejected: -0.9709
- Logps/chosen: -0.7882
- Logits/rejected: -2.9442
- Logits/chosen: -2.9335
- Nll Loss: 0.8317
- Log Odds Ratio: -0.6241
- Log Odds Chosen: 0.3600

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 100
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:--------------:|:---------------:|
| 0.9081        | 0.95  | 100  | 0.8756          | -0.0406        | -0.0483          | 0.625              | 0.0077          | -0.9657        | -0.8116      | -3.0351         | -3.0266       | 0.8517   | -0.6438        | 0.3078          |
| 0.8743        | 1.9   | 200  | 0.8544          | -0.0391        | -0.0474          | 0.6458             | 0.0083          | -0.9474        | -0.7823      | -2.9519         | -2.9423       | 0.8308   | -0.6319        | 0.3327          |
| 0.7952        | 2.84  | 300  | 0.8562          | -0.0394        | -0.0485          | 0.6615             | 0.0091          | -0.9709        | -0.7880      | -2.9507         | -2.9399       | 0.8317   | -0.6238        | 0.3606          |


### Framework versions

- Transformers 4.39.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2