File size: 13,008 Bytes
7b361da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import torch
import onnxruntime
import numpy as np
from sentencepiece import SentencePieceProcessor
from typing import List
import os
import logging
import gc
from .base_interface import BaseLLMInterface
from ChatApp.app_modules.utils import (
is_stop_word_or_prefix,
convert_to_markdown,
shared_state,
)
class Tokenizer:
def __init__(self, model_path: str):
# reload tokenizer
assert os.path.isfile(model_path), model_path
self.sp_model = SentencePieceProcessor(model_file=model_path)
# BOS / EOS token IDs
self.n_words: int = self.sp_model.vocab_size()
self.bos_id: int = self.sp_model.bos_id()
self.eos_id: int = self.sp_model.eos_id()
self.pad_id: int = self.sp_model.pad_id()
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
def encode(self, s: str, bos: bool, eos: bool) -> List[int]:
assert type(s) is str
t = self.sp_model.encode(s)
if bos:
t = [self.bos_id] + t
if eos:
t = t + [self.eos_id]
return t
def decode(self, t: List[int]) -> str:
return self.sp_model.decode(t)
class LlamaOnnxInterface(BaseLLMInterface):
def __init__(self, onnx_file="", embedding_file="", tokenizer_path=""):
super().__init__()
self.onnx_file = onnx_file
self.embedding_file = embedding_file
self.tokenizer_path = tokenizer_path
self.total_count = 0
def initialize(self):
# Create the ONNX session
logging.info(f"Creating ONNX session for [{self.onnx_file}]")
options = onnxruntime.SessionOptions()
self.llm_session = onnxruntime.InferenceSession(
self.onnx_file,
sess_options=options,
providers=[
"DmlExecutionProvider",
"CUDAExecutionProvider",
"CPUExecutionProvider",
],
)
# get the data type used by the model
data_type_str = self.llm_session.get_inputs()[0].type
if data_type_str == "tensor(float16)":
self.data_type = np.float16
elif data_type_str == "tensor(float32)":
self.data_type = np.float32
else:
raise Exception(f"Unknown data type {data_type_str}")
logging.info(f"Detected Data Type [{self.data_type}]")
# Get the relevant shapes so we can create the inputs
for inputs_meta in self.llm_session._inputs_meta:
if inputs_meta.name == "x":
x_shape = inputs_meta.shape
elif inputs_meta.name == "attn_mask":
attn_mask_shape = inputs_meta.shape
elif inputs_meta.name == "k_cache":
k_cache_shape = inputs_meta.shape
self.hidden_size = x_shape[2]
self.max_seq_len = attn_mask_shape[1]
self.n_layers = k_cache_shape[1]
self.n_heads = k_cache_shape[3]
# Initialize the tokenizer and produce the initial tokens.
self.tokenizer = Tokenizer(model_path=self.tokenizer_path)
# create the embedding layer.
logging.info(
f"Creating the Embedding Layer. Size [{self.tokenizer.n_words}, {self.hidden_size}]"
)
self.embeddingLayer = torch.nn.Embedding(
self.tokenizer.n_words, self.hidden_size
)
# rg hack - dont have the embeddings.pth file - taking it from the original llama model
d = torch.load(self.embedding_file)
self.embeddingLayer.load_state_dict(d)
self.embeddingLayer.eval()
# Create the attention mask.
self.attn_mask = -10000.0 * torch.triu(
torch.ones(attn_mask_shape), diagonal=1
).cpu().detach().numpy().astype(self.data_type)
# Create the K and V caches.
self.head_dim = int(self.hidden_size / self.n_heads)
self.k_cache = np.zeros(
[1, self.n_layers, self.max_seq_len, self.n_heads, self.head_dim],
dtype=self.data_type,
)
self.v_cache = np.zeros(
[1, self.n_layers, self.max_seq_len, self.n_heads, self.head_dim],
dtype=self.data_type,
)
def shutdown(self):
pass
def generate_prompt_with_history(self, text, history, tokenizer, max_length=2048):
prompt = "[|Human|]Hey there I am a human that would like to have\
a conversation with you.\n[|AI|]Sure, I am happy to answer most questions\
\n[|Human|]Great, I insist that we take turns.\n[|AI|]I agree, we should\
take turns.\n[|Human|]Great, can we also keep answers short\n[|AI|]Yes, \
short answers are usually best"
history = ["\n[|Human|]{}\n[|AI|]{}".format(x[0], x[1]) for x in history]
history.append("\n[|Human|]{}\n[|AI|]".format(text))
history_text = ""
flag = False
for x in history[::-1]:
# tokens = self.tokenizer.encode(text, bos=True, eos=False)
if (
len(
self.tokenizer.encode(
prompt + history_text + x, bos=True, eos=False
)
)
<= max_length
):
history_text = x + history_text
flag = True
else:
break
if flag:
return prompt + history_text, torch.tensor(
self.tokenizer.encode(prompt + history_text, bos=True, eos=False)
).unsqueeze(0)
else:
return None
def sample_logits(
self,
logits: np.ndarray,
sampling_method: str = "greedy",
sampling_value: float = None,
temperature: float = 1.0,
) -> np.ndarray:
if temperature == 0 or sampling_method == "greedy":
next_token = np.argmax(logits, axis=-1).astype(np.int64)
elif sampling_method == "top_k" or sampling_method == "top_p":
assert sampling_value is not None
# temperature, converting to probabilities and sorting are common to both top-k and top-p
# convert logits to 32-bit float to avoid numerical issues with np.exp
logits = logits.astype(np.float32)
# Scale the logits by the temperature
logits /= temperature
# Convert logits to probabilities
probs = np.exp(logits) / np.sum(np.exp(logits))
# Sort th probabilities and indexes
sorted_probs = np.sort(probs)[:, ::-1]
sorted_indices = np.argsort(probs)[:, ::-1]
# find the index of interest for each of the methods.
if sampling_method == "top_k":
index_of_interest = int(sampling_value)
elif sampling_method == "top_p":
p = sampling_value
cumulative_probs = np.cumsum(sorted_probs, axis=-1)
# find the value of the first cumalitive probability that exceeds p
for index_of_interest, cumulative_prob in enumerate(
cumulative_probs[0]
):
if cumulative_prob > p:
break
probs_of_interest = sorted_probs[:, : index_of_interest + 1]
indices_of_interest = sorted_indices[:, : index_of_interest + 1]
# Normalize the probabilities and select the next token
probs_of_interest /= np.sum(probs_of_interest)
next_token = np.array(
[np.random.choice(indices_of_interest[0], p=probs_of_interest[0])]
)
else:
raise Exception(f"Unknown sampling method {sampling_method}")
return next_token
def greedy_search(
self,
input_ids,
model,
tokenizer,
stop_words: list,
max_length: int,
temperature: float = 1.0,
top_p: float = 1.0,
top_k: int = 25,
):
generated_tokens = []
pos = np.array(0)
x = (
self.embeddingLayer(torch.tensor(input_ids))
.detach()
.cpu()
.numpy()
.astype(self.data_type)
)
for i in range(max_length):
results = self.llm_session.run(
None,
{
"x": x,
"attn_mask": self.attn_mask,
"k_cache": self.k_cache[:, :, :pos],
"v_cache": self.v_cache[:, :, :pos],
"pos": pos.astype(np.int64),
},
)
logits, k_out, v_out = results[:3]
next_token = self.sample_logits(logits, "top_p", top_p, temperature)
next_token = next_token.reshape(1, -1)
# Stop if/when we get an ENDOFTEXT token before reaching maximum sequence length
if next_token[0] == tokenizer.eos_id:
del logits
gc.collect()
return
input_ids = torch.cat((input_ids, torch.tensor(next_token)), dim=-1)
generated_tokens.append(next_token[0].item())
text = tokenizer.decode(generated_tokens)
seq_len = x.shape[1]
self.k_cache[:, :, pos : pos + seq_len] = k_out
self.v_cache[:, :, pos : pos + seq_len] = v_out
pos = np.array(int(pos) + seq_len)
x = (
self.embeddingLayer(torch.tensor(next_token))
.unsqueeze(0)
.reshape([1, 1, self.hidden_size])
.cpu()
.detach()
.numpy()
.astype(self.data_type)
)
yield text
if any([x in text for x in stop_words]):
del logits
gc.collect()
return
def predict(
self,
text,
chatbot,
history,
top_p,
temperature,
max_length_tokens,
max_context_length_tokens,
):
if text == "":
yield chatbot, history, "Empty context."
return
try:
self.llm_session
except (ValueError, RuntimeError, TypeError):
yield [[text, "No Model Found"]], [], "No Model Found"
return
inputs = self.generate_prompt_with_history(
text, history, self.tokenizer, max_length=max_context_length_tokens
)
if inputs is None:
yield chatbot, history, "Input too long."
return
else:
prompt, inputs = inputs
input_ids = inputs[:, -max_context_length_tokens:]
# global total_count
self.total_count += 1
print(self.total_count)
self.head_dim = int(self.hidden_size / self.n_heads)
self.k_cache = np.zeros(
[1, self.n_layers, self.max_seq_len, self.n_heads, self.head_dim],
dtype=self.data_type,
)
self.v_cache = np.zeros(
[1, self.n_layers, self.max_seq_len, self.n_heads, self.head_dim],
dtype=self.data_type,
)
x = input_ids
for x in self.greedy_search(
input_ids,
self.llm_session,
self.tokenizer,
stop_words=["[|Human|]", "[|AI|]"],
max_length=max_length_tokens,
temperature=temperature,
top_p=top_p,
):
if is_stop_word_or_prefix(x, ["[|Human|]", "[|AI|]"]) is False:
if "[|Human|]" in x:
x = x[: x.index("[|Human|]")].strip()
if "[|AI|]" in x:
x = x[: x.index("[|AI|]")].strip()
x = x.strip()
a, b = [[y[0], convert_to_markdown(y[1])] for y in history] + [
[text, convert_to_markdown(x)]
], history + [[text, x]]
yield a, b, "Generating..."
if shared_state.interrupted:
shared_state.recover()
try:
yield a, b, "Stop: Success"
return
except Exception as e:
print(type(e).__name__, e)
pass
del input_ids
gc.collect()
torch.cuda.empty_cache()
try:
yield a, b, "Generate: Success"
except Exception as e:
print(type(e).__name__, e)
pass
return
def retry(
self,
text,
chatbot,
history,
top_p,
temperature,
max_length_tokens,
max_context_length_tokens,
):
logging.info("Retry...")
if len(history) == 0:
yield chatbot, history, "Empty context"
return
chatbot.pop()
inputs = history.pop()[0]
for x in self.predict(
inputs,
chatbot,
history,
top_p,
temperature,
max_length_tokens,
max_context_length_tokens,
):
yield x
|