File size: 3,411 Bytes
2058c5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# In this example, a user is running a home cluster with 3 shards.
# They are prompting the cluster to generate a response to a question.
# The cluster is given the question, and the user is given the response.

from exo.inference.mlx.sharded_utils import get_model_path, load_tokenizer
from exo.inference.shard import Shard
from exo.networking.peer_handle import PeerHandle
from exo.networking.grpc.grpc_peer_handle import GRPCPeerHandle
from exo.topology.device_capabilities import DeviceCapabilities, DeviceFlops
from typing import List
import asyncio
import argparse
import uuid

models = {
    "mlx-community/Meta-Llama-3-8B-Instruct-4bit": Shard(model_id="mlx-community/Meta-Llama-3-8B-Instruct-4bit", start_layer=0, end_layer=0, n_layers=32),
    "mlx-community/Meta-Llama-3-70B-Instruct-4bit": Shard(model_id="mlx-community/Meta-Llama-3-70B-Instruct-4bit", start_layer=0, end_layer=0, n_layers=80),
    ""
}

path_or_hf_repo = "mlx-community/Meta-Llama-3-8B-Instruct-4bit"
model_path = get_model_path(path_or_hf_repo)
tokenizer_config = {}
tokenizer = load_tokenizer(model_path, tokenizer_config)

# we intentionally leave out peer1 to demonstrate equality of nodes in exo.
# there is no "master" node in exo, all nodes are equal and can take on any role.
# peer1 = GRPCPeerHandle(
#     "node1",
#     "localhost:8080",
#     DeviceCapabilities(model="placeholder", chip="placeholder", memory=0)
# )
peer2 = GRPCPeerHandle(
    "node2",
    "localhost:8081",
    DeviceCapabilities(model="placeholder", chip="placeholder", memory=0, flops=DeviceFlops(fp32=0, fp16=0, int8=0))
)
shard = models[path_or_hf_repo]
request_id = str(uuid.uuid4())

async def run_prompt(prompt: str):
    if tokenizer.chat_template is None:
        tokenizer.chat_template = tokenizer.default_chat_template
    if (
        hasattr(tokenizer, "apply_chat_template")
        and tokenizer.chat_template is not None
    ):
        messages = [{"role": "user", "content": prompt}]
        prompt = tokenizer.apply_chat_template(
            messages, tokenize=False, add_generation_prompt=True
        )

    await peer2.connect()
    await peer2.global_reset(shard, set(), 2)

    try:
        await peer2.send_prompt(shard, prompt, request_id)
    except Exception as e:
        print(e)

    import time
    # poll 10 times per second for result (even though generation is faster, any more than this it's not nice for the user)
    previous_length = 0
    n_tokens = 0
    start_time = time.perf_counter()
    while True:
        try:
            result, is_finished = await peer2.get_inference_result(request_id)
        except Exception as e:
            continue
        await asyncio.sleep(0.1)

        # Print the updated string in place
        updated_string = tokenizer.decode(result)
        n_tokens = len(result)
        print(updated_string[previous_length:], end='', flush=True)
        previous_length = len(updated_string)

        if is_finished:
            print("\nDone")
            break
    end_time = time.perf_counter()
    print(f"\nDone. Processed {n_tokens} tokens in {end_time - start_time:.2f} seconds ({n_tokens / (end_time - start_time):.2f} tokens/second)")

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Run prompt")
    parser.add_argument("--prompt", type=str, help="The prompt to run")
    args = parser.parse_args()

    asyncio.run(run_prompt(args.prompt))