File size: 22,234 Bytes
f9a3fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
#!/usr/bin/env python3
# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang, Zengwei Yao)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import argparse
import logging
import math
import warnings
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Tuple, Union

import kaldifeat
import sentencepiece as spm
import torch
import torchaudio

from torch.nn.utils.rnn import pad_sequence

from icefall import NgramLm, NgramLmStateCost
from icefall.decode import Nbest, one_best_decoding
from icefall.lm_wrapper import LmScorer
from icefall.rnn_lm.model import RnnLmModel
from icefall.transformer_lm.model import TransformerLM
from icefall.utils import AttributeDict
from icefall.lexicon import Lexicon

import k2


def read_sound_files(
    filenames: List[str], expected_sample_rate: float = 16000
) -> List[torch.Tensor]:
    """Read a list of sound files into a list 1-D float32 torch tensors.
    Args:
      filenames:
        A list of sound filenames.
      expected_sample_rate:
        The expected sample rate of the sound files.
    Returns:
      Return a list of 1-D float32 torch tensors.
    """
    ans = []
    for f in filenames:
        wave, sample_rate = torchaudio.load(f)
        resampler = torchaudio.transforms.Resample(sample_rate, 16_000)
        wav = resampler(wave[0])
        ans.append(wav)
    return ans

@dataclass
class Hypothesis:
    # The predicted tokens so far.
    # Newly predicted tokens are appended to `ys`.
    ys: List[int]

    # The log prob of ys.
    # It contains only one entry.
    log_prob: torch.Tensor

    # timestamp[i] is the frame index after subsampling
    # on which ys[i] is decoded
    timestamp: List[int] = field(default_factory=list)

    # the lm score for next token given the current ys
    lm_score: Optional[torch.Tensor] = None

    # the RNNLM states (h and c in LSTM)
    state: Optional[Tuple[torch.Tensor, torch.Tensor]] = None

    # N-gram LM state
    state_cost: Optional[NgramLmStateCost] = None

    @property
    def key(self) -> str:
        """Return a string representation of self.ys"""
        return "_".join(map(str, self.ys))


class HypothesisList(object):
    def __init__(self, data: Optional[Dict[str, Hypothesis]] = None) -> None:
        """
        Args:
          data:
            A dict of Hypotheses. Its key is its `value.key`.
        """
        if data is None:
            self._data = {}
        else:
            self._data = data

    @property
    def data(self) -> Dict[str, Hypothesis]:
        return self._data

    def add(self, hyp: Hypothesis) -> None:
        """Add a Hypothesis to `self`.

        If `hyp` already exists in `self`, its probability is updated using
        `log-sum-exp` with the existed one.

        Args:
          hyp:
            The hypothesis to be added.
        """
        key = hyp.key
        if key in self:
            old_hyp = self._data[key]  # shallow copy
            torch.logaddexp(old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob)
        else:
            self._data[key] = hyp

    def get_most_probable(self, length_norm: bool = False) -> Hypothesis:
        """Get the most probable hypothesis, i.e., the one with
        the largest `log_prob`.

        Args:
          length_norm:
            If True, the `log_prob` of a hypothesis is normalized by the
            number of tokens in it.
        Returns:
          Return the hypothesis that has the largest `log_prob`.
        """
        if length_norm:
            return max(self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys))
        else:
            return max(self._data.values(), key=lambda hyp: hyp.log_prob)

    def remove(self, hyp: Hypothesis) -> None:
        """Remove a given hypothesis.

        Caution:
          `self` is modified **in-place**.

        Args:
          hyp:
            The hypothesis to be removed from `self`.
            Note: It must be contained in `self`. Otherwise,
            an exception is raised.
        """
        key = hyp.key
        assert key in self, f"{key} does not exist"
        del self._data[key]

    def filter(self, threshold: torch.Tensor) -> "HypothesisList":
        """Remove all Hypotheses whose log_prob is less than threshold.

        Caution:
          `self` is not modified. Instead, a new HypothesisList is returned.

        Returns:
          Return a new HypothesisList containing all hypotheses from `self`
          with `log_prob` being greater than the given `threshold`.
        """
        ans = HypothesisList()
        for _, hyp in self._data.items():
            if hyp.log_prob > threshold:
                ans.add(hyp)  # shallow copy
        return ans

    def topk(self, k: int, length_norm: bool = False) -> "HypothesisList":
        """Return the top-k hypothesis.

        Args:
          length_norm:
            If True, the `log_prob` of a hypothesis is normalized by the
            number of tokens in it.
        """
        hyps = list(self._data.items())

        if length_norm:
            hyps = sorted(
                hyps, key=lambda h: h[1].log_prob / len(h[1].ys), reverse=True
            )[:k]
        else:
            hyps = sorted(hyps, key=lambda h: h[1].log_prob, reverse=True)[:k]

        ans = HypothesisList(dict(hyps))
        return ans

    def __contains__(self, key: str):
        return key in self._data

    def __iter__(self):
        return iter(self._data.values())

    def __len__(self) -> int:
        return len(self._data)

    def __str__(self) -> str:
        s = []
        for key in self:
            s.append(key)
        return ", ".join(s)


def get_hyps_shape(hyps: List[HypothesisList]) -> k2.RaggedShape:
    """Return a ragged shape with axes [utt][num_hyps].

    Args:
      hyps:
        len(hyps) == batch_size. It contains the current hypothesis for
        each utterance in the batch.
    Returns:
      Return a ragged shape with 2 axes [utt][num_hyps]. Note that
      the shape is on CPU.
    """
    num_hyps = [len(h) for h in hyps]

    # torch.cumsum() is inclusive sum, so we put a 0 at the beginning
    # to get exclusive sum later.
    num_hyps.insert(0, 0)

    num_hyps = torch.tensor(num_hyps)
    row_splits = torch.cumsum(num_hyps, dim=0, dtype=torch.int32)
    ans = k2.ragged.create_ragged_shape2(
        row_splits=row_splits, cached_tot_size=row_splits[-1].item()
    )
    return ans


def modified_beam_search_LODR(
    model,
    encoder_out: torch.Tensor,
    encoder_out_lens: torch.Tensor,
    LODR_lm: NgramLm,
    LODR_lm_scale: float,
    LM: LmScorer,
    beam: int = 4,
) -> List[List[int]]:
    """This function implements LODR (https://arxiv.org/abs/2203.16776) with
    `modified_beam_search`. It uses a bi-gram language model as the estimate
    of the internal language model and subtracts its score during shallow fusion
    with an external language model. This implementation uses a RNNLM as the
    external language model.

    Args:
        model (Transducer):
            The transducer model
        encoder_out (torch.Tensor):
            Encoder output in (N,T,C)
        encoder_out_lens (torch.Tensor):
            A 1-D tensor of shape (N,), containing the number of
            valid frames in encoder_out before padding.
        LODR_lm:
            A low order n-gram LM, whose score will be subtracted during shallow fusion
        LODR_lm_scale:
            The scale of the LODR_lm
        LM:
            A neural net LM, e.g an RNNLM or transformer LM
        beam (int, optional):
            Beam size. Defaults to 4.

    Returns:
      Return a list-of-list of token IDs. ans[i] is the decoding results
      for the i-th utterance.

    """
    assert encoder_out.ndim == 3, encoder_out.shape
    assert encoder_out.size(0) >= 1, encoder_out.size(0)
    assert LM is not None
    lm_scale = LM.lm_scale

    packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
        input=encoder_out,
        lengths=encoder_out_lens.cpu(),
        batch_first=True,
        enforce_sorted=False,
    )

    blank_id = model.decoder.blank_id
    sos_id = getattr(LM, "sos_id", 1)
    unk_id = getattr(model, "unk_id", blank_id)
    context_size = model.decoder.context_size
    device = next(model.parameters()).device

    batch_size_list = packed_encoder_out.batch_sizes.tolist()
    N = encoder_out.size(0)
    assert torch.all(encoder_out_lens > 0), encoder_out_lens
    assert N == batch_size_list[0], (N, batch_size_list)

    # get initial lm score and lm state by scoring the "sos" token
    sos_token = torch.tensor([[sos_id]]).to(torch.int64).to(device)
    lens = torch.tensor([1]).to(device)
    init_score, init_states = LM.score_token(sos_token, lens)

    B = [HypothesisList() for _ in range(N)]
    for i in range(N):
        B[i].add(
            Hypothesis(
                ys=[blank_id] * context_size,
                log_prob=torch.zeros(1, dtype=torch.float32, device=device),
                state=init_states,  # state of the NN LM
                lm_score=init_score.reshape(-1),
                state_cost=NgramLmStateCost(
                    LODR_lm
                ),  # state of the source domain ngram
            )
        )

    encoder_out = model.joiner.encoder_proj(packed_encoder_out.data)

    offset = 0
    finalized_B = []
    for batch_size in batch_size_list:
        start = offset
        end = offset + batch_size
        current_encoder_out = encoder_out.data[start:end]  # get batch
        current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1)
        # current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim)
        offset = end

        finalized_B = B[batch_size:] + finalized_B
        B = B[:batch_size]

        hyps_shape = get_hyps_shape(B).to(device)

        A = [list(b) for b in B]
        B = [HypothesisList() for _ in range(batch_size)]

        ys_log_probs = torch.cat(
            [hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps]
        )

        decoder_input = torch.tensor(
            [hyp.ys[-context_size:] for hyps in A for hyp in hyps],
            device=device,
            dtype=torch.int64,
        )  # (num_hyps, context_size)

        decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
        decoder_out = model.joiner.decoder_proj(decoder_out)

        current_encoder_out = torch.index_select(
            current_encoder_out,
            dim=0,
            index=hyps_shape.row_ids(1).to(torch.int64),
        )  # (num_hyps, 1, 1, encoder_out_dim)

        logits = model.joiner(
            current_encoder_out,
            decoder_out,
            project_input=False,
        )  # (num_hyps, 1, 1, vocab_size)

        logits = logits.squeeze(1).squeeze(1)  # (num_hyps, vocab_size)

        log_probs = logits.log_softmax(dim=-1)  # (num_hyps, vocab_size)

        log_probs.add_(ys_log_probs)

        vocab_size = log_probs.size(-1)

        log_probs = log_probs.reshape(-1)

        row_splits = hyps_shape.row_splits(1) * vocab_size
        log_probs_shape = k2.ragged.create_ragged_shape2(
            row_splits=row_splits, cached_tot_size=log_probs.numel()
        )
        ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs)
        """
        for all hyps with a non-blank new token, score this token.
        It is a little confusing here because this for-loop
        looks very similar to the one below. Here, we go through all
        top-k tokens and only add the non-blanks ones to the token_list.
        LM will score those tokens given the LM states. Note that
        the variable `scores` is the LM score after seeing the new
        non-blank token.
        """
        token_list = []
        hs = []
        cs = []
        for i in range(batch_size):
            topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)

            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
                topk_token_indexes = (topk_indexes % vocab_size).tolist()
            for k in range(len(topk_hyp_indexes)):
                hyp_idx = topk_hyp_indexes[k]
                hyp = A[i][hyp_idx]

                new_token = topk_token_indexes[k]
                if new_token not in (blank_id, unk_id):
                    if LM.lm_type == "rnn":
                        token_list.append([new_token])
                        # store the LSTM states
                        hs.append(hyp.state[0])
                        cs.append(hyp.state[1])
                    else:
                        # for transformer LM
                        token_list.append(
                            [sos_id] + hyp.ys[context_size:] + [new_token]
                        )

        # forward NN LM to get new states and scores
        if len(token_list) != 0:
            x_lens = torch.tensor([len(tokens) for tokens in token_list]).to(device)
            if LM.lm_type == "rnn":
                tokens_to_score = (
                    torch.tensor(token_list).to(torch.int64).to(device).reshape(-1, 1)
                )
                hs = torch.cat(hs, dim=1).to(device)
                cs = torch.cat(cs, dim=1).to(device)
                state = (hs, cs)
            else:
                # for transformer LM
                tokens_list = [torch.tensor(tokens) for tokens in token_list]
                tokens_to_score = (
                    torch.nn.utils.rnn.pad_sequence(
                        tokens_list, batch_first=True, padding_value=0.0
                    )
                    .to(device)
                    .to(torch.int64)
                )

                state = None

            scores, lm_states = LM.score_token(tokens_to_score, x_lens, state)

        count = 0  # index, used to locate score and lm states
        for i in range(batch_size):
            topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)

            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
                topk_token_indexes = (topk_indexes % vocab_size).tolist()

            for k in range(len(topk_hyp_indexes)):
                hyp_idx = topk_hyp_indexes[k]
                hyp = A[i][hyp_idx]

                ys = hyp.ys[:]

                # current score of hyp
                lm_score = hyp.lm_score
                state = hyp.state

                hyp_log_prob = topk_log_probs[k]  # get score of current hyp
                new_token = topk_token_indexes[k]
                if new_token not in (blank_id, unk_id):

                    ys.append(new_token)
                    state_cost = hyp.state_cost.forward_one_step(new_token)

                    # calculate the score of the latest token
                    current_ngram_score = state_cost.lm_score - hyp.state_cost.lm_score

                    assert current_ngram_score <= 0.0, (
                        state_cost.lm_score,
                        hyp.state_cost.lm_score,
                    )
                    # score = score + TDLM_score - LODR_score
                    # LODR_LM_scale should be a negative number here
                    hyp_log_prob += (
                        lm_score[new_token] * lm_scale
                        + LODR_lm_scale * current_ngram_score
                    )  # add the lm score

                    lm_score = scores[count]
                    if LM.lm_type == "rnn":
                        state = (
                            lm_states[0][:, count, :].unsqueeze(1),
                            lm_states[1][:, count, :].unsqueeze(1),
                        )
                    count += 1
                else:
                    state_cost = hyp.state_cost

                new_hyp = Hypothesis(
                    ys=ys,
                    log_prob=hyp_log_prob,
                    state=state,
                    lm_score=lm_score,
                    state_cost=state_cost,
                )
                B[i].add(new_hyp)

    B = B + finalized_B
    best_hyps = [b.get_most_probable(length_norm=True) for b in B]

    sorted_ans = [h.ys[context_size:] for h in best_hyps]
    ans = []
    unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
    for i in range(N):
        ans.append(sorted_ans[unsorted_indices[i]])

    return ans


def greedy_search(
    model: torch.jit.ScriptModule,
    encoder_out: torch.Tensor,
    encoder_out_lens: torch.Tensor,
) -> List[List[int]]:
    """Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
    Args:
      model:
        The transducer model.
      encoder_out:
        A 3-D tensor of shape (N, T, C)
      encoder_out_lens:
        A 1-D tensor of shape (N,).
    Returns:
      Return the decoded results for each utterance.
    """
    assert encoder_out.ndim == 3
    assert encoder_out.size(0) >= 1, encoder_out.size(0)

    packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
        input=encoder_out,
        lengths=encoder_out_lens.cpu(),
        batch_first=True,
        enforce_sorted=False,
    )

    device = encoder_out.device
    blank_id = 0  # hard-code to 0

    batch_size_list = packed_encoder_out.batch_sizes.tolist()
    N = encoder_out.size(0)

    assert torch.all(encoder_out_lens > 0), encoder_out_lens
    assert N == batch_size_list[0], (N, batch_size_list)

    context_size = model.decoder.context_size
    hyps = [[blank_id] * context_size for _ in range(N)]

    decoder_input = torch.tensor(
        hyps,
        device=device,
        dtype=torch.int64,
    )  # (N, context_size)

    decoder_out = model.decoder(
        decoder_input,
        need_pad=torch.tensor([False]),
    ).squeeze(1)

    offset = 0
    for batch_size in batch_size_list:
        start = offset
        end = offset + batch_size
        current_encoder_out = packed_encoder_out.data[start:end]
        current_encoder_out = current_encoder_out
        # current_encoder_out's shape: (batch_size, encoder_out_dim)
        offset = end

        decoder_out = decoder_out[:batch_size]

        logits = model.joiner(
            current_encoder_out,
            decoder_out,
        )
        # logits'shape (batch_size, vocab_size)

        assert logits.ndim == 2, logits.shape
        y = logits.argmax(dim=1).tolist()
        emitted = False
        for i, v in enumerate(y):
            if v != blank_id:
                hyps[i].append(v)
                emitted = True
        if emitted:
            # update decoder output
            decoder_input = [h[-context_size:] for h in hyps[:batch_size]]
            decoder_input = torch.tensor(
                decoder_input,
                device=device,
                dtype=torch.int64,
            )
            decoder_out = model.decoder(
                decoder_input,
                need_pad=torch.tensor([False]),
            )
            decoder_out = decoder_out.squeeze(1)

    sorted_ans = [h[context_size:] for h in hyps]
    ans = []
    unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
    for i in range(N):
        ans.append(sorted_ans[unsorted_indices[i]])

    return ans


@torch.no_grad()
def main():
    torch.set_num_threads(8)

    device = torch.device("cpu")
    if torch.cuda.is_available():
        device = torch.device("cuda", 0)

    model = torch.jit.load("am/jit_script.pt")

    model.eval()

    model.to(device)

    sp = spm.SentencePieceProcessor()
    sp.load("lang/bpe.model")

    opts = kaldifeat.FbankOptions()
    opts.device = device
    opts.frame_opts.dither = 0
    opts.frame_opts.snip_edges = False
    opts.frame_opts.samp_freq = 16000
    opts.mel_opts.num_bins = 80

    fbank = kaldifeat.Fbank(opts)

    all_filenames = sys.argv[1:]

    params = AttributeDict()
    params.vocab_size = 500
    params.rnn_lm_embedding_dim = 2048
    params.rnn_lm_hidden_dim = 2048
    params.rnn_lm_num_layers = 3
    params.rnn_lm_tie_weights = True
    params.lm_epoch = 99
    params.lm_exp_dir = "lm"
    params.lm_avg = 1

    LM = LmScorer(
        lm_type="rnn",
        params=params,
        device=device,
        lm_scale=0.2,
    )
    LM.to(device)
    LM.eval()

    ngram_lm = NgramLm(
        "lm/2gram.fst.txt",
        backoff_id=500,
        is_binary=False,
    )
    ngram_lm_scale = -0.1

    for i in range(0, len(all_filenames), 16):
        filenames = all_filenames[i:i+16]
        waves = read_sound_files(
            filenames=filenames,
        )
        waves = [w.to(device) for w in waves]

        features = fbank(waves)
        feature_lengths = [f.size(0) for f in features]

        features = pad_sequence(
            features,
            batch_first=True,
            padding_value=math.log(1e-10),
        )

        feature_lengths = torch.tensor(feature_lengths, device=device)

        encoder_out, encoder_out_lens = model.encoder(
            features=features,
            feature_lengths=feature_lengths,
        )

        hyps = modified_beam_search_LODR(
            model=model,
            encoder_out=encoder_out,
            encoder_out_lens=encoder_out_lens,
            beam=20,
            LODR_lm=ngram_lm,
            LODR_lm_scale=ngram_lm_scale,
            LM=LM,
        )

        for f, hyp in zip(filenames, hyps):
            words = sp.decode(hyp)
            print(f"{f.split('/')[-1][0:-4]} {words}")

if __name__ == "__main__":
    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"

    logging.basicConfig(format=formatter, level=logging.INFO)
    main()