Tailor
Model description
This is a ported version of Tailor, the general-purpose counterfactual generator. For more code release, please refer to this github page.
How to use
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
model_path = "allenai/tailor"
generator = pipeline("text2text-generation",
model=AutoModelForSeq2SeqLM.from_pretrained(model_path),
tokenizer=AutoTokenizer.from_pretrained(model_path),
framework="pt", device=0)
prompt_text = "[VERB+active+past: comfort | AGENT+complete: the doctor | PATIENT+partial: athlete | LOCATIVE+partial: in] <extra_id_0> , <extra_id_1> <extra_id_2> <extra_id_3> ."
generator(prompt_text, max_length=200)
BibTeX entry and citation info
@misc{ross2021tailor,
title={Tailor: Generating and Perturbing Text with Semantic Controls},
author={Alexis Ross and Tongshuang Wu and Hao Peng and Matthew E. Peters and Matt Gardner},
year={2021},
eprint={2107.07150},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2107.07150},
}
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.