File size: 3,883 Bytes
44caa36
 
 
 
 
 
 
 
 
e5f27bf
44caa36
e5f27bf
44caa36
 
e5f27bf
c0631a3
44caa36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f27bf
44caa36
 
 
 
 
 
 
 
 
 
e5f27bf
44caa36
 
 
829015a
44caa36
 
c0631a3
44caa36
 
6fd7e3f
 
 
 
 
 
 
44caa36
 
 
c0631a3
 
 
 
 
 
 
 
 
 
 
44caa36
 
 
 
 
 
 
 
 
 
c0631a3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
datasets:
- databricks/databricks-dolly-15k
language:
- en
---

# Open-Instruct Dolly 7B

This model is a 7B LLaMa model finetuned on the Dolly dataset. *Please note this is a model diff - see below for usage instructions*.

This was trained as part of the paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751).
The codebase used to train and evaluate this model can be found at [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct).

This model is licensed under the AI model license given in LICENSE.txt along with the original Llama license (llama_license.txt).

## Usage

We assume you have access to a LLaMa model in HF format already. You can find details on getting access and converting the model here:
[https://huggingface.co/docs/transformers/main/model_doc/llama](https://huggingface.co/docs/transformers/main/model_doc/llama)

Clone [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct) and install the required dependencies, or just copy `scripts/weight_diff.py`
and install the minimal requirements listed in `weight-diff-requirements.txt`. Then download or clone this model diff to the same machine.

Then, run:
```bash
python scripts/weight_diff.py recover --path_raw ${hf_llama_path} --path_tuned ${output_path} --path_diff ${diff_location}
```

And you will have a recovered model! Note this takes up a decent amount of RAM, especially for the larger models.

## Input Format

The model is trained to use the following format (note the newlines):
```
<|user|>
Your message here!
<|assistant|>
```

For best results, format all inputs in this manner.

## Performance

Here is the performance of this model across benchmarks explored in our paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751):

| MMLU 0-shot | MMLU 5-shot | GSM Direct | GSM CoT | BBH Direct | BBH CoT | TydiQA Gold-Passage | TydiQA Closed-book | Codex-Eval Pass@1 | Codex-Eval Pass@10 | AlpacaFarm vs Davinci-003 | Average |
|:-----------:|:-----------:|:----------:|:-------:|:----------:|:-------:|:-------------------:|:------------------:|:-----------------:|:------------------:|:-------------------------:|---------|
|    38.0    |    35.8    |    5.0   |  7.0  |    27.2   |  24.4  |        43.6       |        8.7       |       11.1       |        22.1       |           12.7           | 20.7    |


If you use this model, please cite our work, the llama paper, and the original dataset:

```
@misc{wang2023far,
      title={How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources}, 
      author={Yizhong Wang and Hamish Ivison and Pradeep Dasigi and Jack Hessel and Tushar Khot and Khyathi Raghavi Chandu and David Wadden and Kelsey MacMillan and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi},
      year={2023},
      eprint={2306.04751},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

```
@misc{touvron2023llama,
      title={LLaMA: Open and Efficient Foundation Language Models}, 
      author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
      year={2023},
      eprint={2302.13971},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

```
@misc{dolly,
  author = {Databricks},
  title = {Free Dolly: Introducing the World's First Truly Open Instruction-Tuned LLM},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {Blog post},
  url = {https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm}
}
```