HerBERT tokenizer

HerBERT tokenizer is a character level byte-pair encoding with vocabulary size of 50k tokens. The tokenizer was trained on Wolne Lektury and a publicly available subset of National Corpus of Polish with fastBPE library. Tokenizer utilize XLMTokenizer implementation from transformers.

Tokenizer usage

Herbert tokenizer should be used together with HerBERT model:

from transformers import XLMTokenizer, RobertaModel

tokenizer = XLMTokenizer.from_pretrained("allegro/herbert-klej-cased-tokenizer-v1")
model = RobertaModel.from_pretrained("allegro/herbert-klej-cased-v1")

encoded_input = tokenizer.encode("Kto ma lepszą sztukę, ma lepszy rząd – to jasne.", return_tensors='pt')
outputs = model(encoded_input)

License

CC BY-SA 4.0

Citation

If you use this tokenizer, please cite the following paper:

@misc{rybak2020klej,
    title={KLEJ: Comprehensive Benchmark for Polish Language Understanding},
    author={Piotr Rybak and Robert Mroczkowski and Janusz Tracz and Ireneusz Gawlik},
    year={2020},
    eprint={2005.00630},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

Paper is accepted at ACL 2020, as soon as proceedings appear, we will update the BibTeX.

Authors

Tokenizer was created by Allegro Machine Learning Research team.

You can contact us at: klejbenchmark@allegro.pl

Downloads last month
5
Hosted inference API

Unable to determine this model’s pipeline type. Check the docs .