Edit model card

xlm_roberta_kriter

This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1944
  • F1: 0.7931
  • Roc Auc: 0.8977
  • Accuracy: 0.7656

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.3583 1.0 1151 0.3227 0.1209 0.5303 0.4766
0.289 2.0 2302 0.2266 0.6301 0.7660 0.6719
0.214 3.0 3453 0.1938 0.7500 0.8319 0.7344
0.1901 4.0 4604 0.1990 0.7328 0.8522 0.7188
0.1646 5.0 5755 0.1865 0.7664 0.8626 0.7344
0.1507 6.0 6906 0.1760 0.8030 0.8955 0.7773
0.1247 7.0 8057 0.1797 0.8010 0.9033 0.7695
0.1084 8.0 9208 0.1869 0.8051 0.8918 0.7812
0.0767 9.0 10359 0.1942 0.7931 0.8977 0.7617
0.0796 10.0 11510 0.1944 0.7931 0.8977 0.7656

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
11
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for alionder/xlm_roberta_kriter

Finetuned
(2620)
this model