Improve Model Card with Model Details and Links

#1
by nielsr HF staff - opened
Files changed (1) hide show
  1. README.md +25 -102
README.md CHANGED
@@ -33,125 +33,72 @@ model-index:
33
  name: Accuracy
34
  ---
35
 
36
- # Model Card for Model ID
37
-
38
- <!-- Provide a quick summary of what the model is/does. -->
39
-
40
 
 
41
 
42
  ## Model Details
43
 
44
- ### Model Description
45
-
46
- <!-- Provide a longer summary of what this model is. -->
47
-
48
-
49
-
50
- - **Developed by:** [More Information Needed]
51
- - **Funded by [optional]:** [More Information Needed]
52
- - **Shared by [optional]:** [More Information Needed]
53
- - **Model type:** [More Information Needed]
54
- - **Language(s) (NLP):** [More Information Needed]
55
- - **License:** [More Information Needed]
56
- - **Finetuned from model [optional]:** [More Information Needed]
57
 
58
- ### Model Sources [optional]
59
-
60
- <!-- Provide the basic links for the model. -->
61
-
62
- - **Repository:** [More Information Needed]
63
- - **Paper [optional]:** [More Information Needed]
64
- - **Demo [optional]:** [More Information Needed]
65
 
66
  ## Uses
67
 
68
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
69
-
70
  ### Direct Use
71
 
72
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
73
-
74
- [More Information Needed]
75
-
76
- ### Downstream Use [optional]
77
 
78
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
79
 
80
- [More Information Needed]
81
 
82
  ### Out-of-Scope Use
83
 
84
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
85
-
86
- [More Information Needed]
87
 
88
  ## Bias, Risks, and Limitations
89
 
90
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
91
-
92
- [More Information Needed]
93
 
94
  ### Recommendations
95
 
96
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
97
-
98
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
99
 
100
  ## How to Get Started with the Model
101
 
102
- Use the code below to get started with the model.
103
-
104
  [More Information Needed]
105
 
106
  ## Training Details
107
 
108
  ### Training Data
109
 
110
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
111
-
112
  [More Information Needed]
113
 
114
  ### Training Procedure
115
 
116
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
117
-
118
- #### Preprocessing [optional]
119
-
120
- [More Information Needed]
121
-
122
-
123
- #### Training Hyperparameters
124
-
125
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
126
-
127
- #### Speeds, Sizes, Times [optional]
128
-
129
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
130
-
131
  [More Information Needed]
132
 
133
  ## Evaluation
134
 
135
- <!-- This section describes the evaluation protocols and provides the results. -->
136
-
137
  ### Testing Data, Factors & Metrics
138
 
139
  #### Testing Data
140
 
141
- <!-- This should link to a Dataset Card if possible. -->
142
-
143
  [More Information Needed]
144
 
145
  #### Factors
146
 
147
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
148
-
149
  [More Information Needed]
150
 
151
  #### Metrics
152
 
153
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
154
-
155
  [More Information Needed]
156
 
157
  ### Results
@@ -160,67 +107,43 @@ Use the code below to get started with the model.
160
 
161
  #### Summary
162
 
163
-
164
-
165
- ## Model Examination [optional]
166
-
167
- <!-- Relevant interpretability work for the model goes here -->
168
-
169
  [More Information Needed]
170
 
171
- ## Environmental Impact
172
-
173
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
174
-
175
- - **Hardware Type:** [More Information Needed]
176
- - **Hours used:** [More Information Needed]
177
- - **Cloud Provider:** [More Information Needed]
178
- - **Compute Region:** [More Information Needed]
179
- - **Carbon Emitted:** [More Information Needed]
180
-
181
- ## Technical Specifications [optional]
182
-
183
- ### Model Architecture and Objective
184
 
185
  [More Information Needed]
186
 
187
- ### Compute Infrastructure
188
-
189
- [More Information Needed]
190
-
191
- #### Hardware
192
 
193
  [More Information Needed]
194
 
195
- #### Software
196
 
197
  [More Information Needed]
198
 
199
- ## Citation [optional]
200
 
201
  ```
202
  @misc{yuxuan2025detectingoffensivememessocial,
203
- title={Detecting Offensive Memes with Social Biases in Singapore Context Using Multimodal Large Language Models},
204
  author={Cao Yuxuan and Wu Jiayang and Alistair Cheong Liang Chuen and Bryan Shan Guanrong and Theodore Lee Chong Jen and Sherman Chann Zhi Shen},
205
  year={2025},
206
  eprint={2502.18101},
207
  archivePrefix={arXiv},
208
  primaryClass={cs.CV},
209
- url={https://arxiv.org/abs/2502.18101},
210
  }
211
  ```
212
 
213
- ## Glossary [optional]
214
-
215
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
216
 
217
  [More Information Needed]
218
 
219
- ## More Information [optional]
220
 
221
  [More Information Needed]
222
 
223
- ## Model Card Authors [optional]
224
 
225
  [More Information Needed]
226
 
 
33
  name: Accuracy
34
  ---
35
 
36
+ # Model Card for LLaVA-1.6-Mistral-7B-Offensive-Meme-Singapore
 
 
 
37
 
38
+ This model is described in the paper [Detecting Offensive Memes with Social Biases in Singapore Context Using Multimodal Large Language Models](https://arxiv.org/abs/2502.18101). It classifies memes as offensive or not offensive, specifically within the Singaporean context.
39
 
40
  ## Model Details
41
 
42
+ This model is a fine-tuned Vision-Language Model (VLM) designed to detect offensive memes in the Singaporean context. It leverages the strengths of VLMs to handle the nuanced and culturally specific nature of meme interpretation, addressing the limitations of traditional content moderation systems. The model was fine-tuned on a dataset of 112K memes labeled by GPT-4V. The fine-tuning process involved a pipeline incorporating OCR, translation, and a 7-billion parameter VLM (LLaVA-v1.6-Mistral-7b-hf). The resulting model demonstrates strong performance in offensive meme detection, achieving high accuracy and AUROC scores on a held-out test set.
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
+ - **Developed by:** Cao Yuxuan, Wu Jiayang, Alistair Cheong Liang Chuen, Bryan Shan Guanrong, Theodore Lee Chong Jen, and Sherman Chann Zhi Shen
45
+ - **Model type:** Fine-tuned Vision-Language Model (VLM)
46
+ - **Language(s) (NLP):** English (with multilingual capabilities through the pipeline)
47
+ - **License:** MIT
48
+ - **Finetuned from model:** llava-hf/llava-v1.6-mistral-7b-hf
49
+ - **Repository:** https://github.com/aliencaocao/vlm-for-memes-aisg
50
+ - **Paper:** [Detecting Offensive Memes with Social Biases in Singapore Context Using Multimodal Large Language Models](https://arxiv.org/abs/2502.18101)
51
 
52
  ## Uses
53
 
 
 
54
  ### Direct Use
55
 
56
+ The model can be used directly for classifying memes as offensive or non-offensive. Input is expected to be a meme image. The model processes this using OCR and translation where necessary, then utilizes a VLM for classification.
 
 
 
 
57
 
58
+ ### Downstream Use
59
 
60
+ This model can be integrated into larger content moderation systems to enhance the detection of offensive memes, specifically targeting the Singaporean context.
61
 
62
  ### Out-of-Scope Use
63
 
64
+ This model is specifically trained for the Singaporean context. Its performance may degrade significantly when applied to memes from other cultures or regions. It is also not suitable for general-purpose image classification tasks.
 
 
65
 
66
  ## Bias, Risks, and Limitations
67
 
68
+ The model's performance is inherently tied to the quality and representativeness of the training data. Biases present in the training data may be reflected in the model's output, particularly regarding the interpretation of culturally specific humor or references. The model may misclassify memes due to ambiguities in language or visual representation. It is crucial to use this model responsibly and acknowledge its limitations.
 
 
69
 
70
  ### Recommendations
71
 
72
+ Users should be aware of the potential biases and limitations of the model. Human review of the model's output is strongly recommended, especially in high-stakes scenarios. Further research into mitigating bias and enhancing robustness is needed.
 
 
73
 
74
  ## How to Get Started with the Model
75
 
 
 
76
  [More Information Needed]
77
 
78
  ## Training Details
79
 
80
  ### Training Data
81
 
 
 
82
  [More Information Needed]
83
 
84
  ### Training Procedure
85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
  [More Information Needed]
87
 
88
  ## Evaluation
89
 
 
 
90
  ### Testing Data, Factors & Metrics
91
 
92
  #### Testing Data
93
 
 
 
94
  [More Information Needed]
95
 
96
  #### Factors
97
 
 
 
98
  [More Information Needed]
99
 
100
  #### Metrics
101
 
 
 
102
  [More Information Needed]
103
 
104
  ### Results
 
107
 
108
  #### Summary
109
 
 
 
 
 
 
 
110
  [More Information Needed]
111
 
112
+ ## Model Examination
 
 
 
 
 
 
 
 
 
 
 
 
113
 
114
  [More Information Needed]
115
 
116
+ ## Environmental Impact
 
 
 
 
117
 
118
  [More Information Needed]
119
 
120
+ ## Technical Specifications
121
 
122
  [More Information Needed]
123
 
124
+ ## Citation
125
 
126
  ```
127
  @misc{yuxuan2025detectingoffensivememessocial,
128
+ title={Detecting Offensive Memes with Social Biases in Singapore Context Using Multimodal Large Language Models},
129
  author={Cao Yuxuan and Wu Jiayang and Alistair Cheong Liang Chuen and Bryan Shan Guanrong and Theodore Lee Chong Jen and Sherman Chann Zhi Shen},
130
  year={2025},
131
  eprint={2502.18101},
132
  archivePrefix={arXiv},
133
  primaryClass={cs.CV},
134
+ url={https://arxiv.org/abs/2502.18101},
135
  }
136
  ```
137
 
138
+ ## Glossary
 
 
139
 
140
  [More Information Needed]
141
 
142
+ ## More Information
143
 
144
  [More Information Needed]
145
 
146
+ ## Model Card Authors
147
 
148
  [More Information Needed]
149