File size: 1,647 Bytes
3d41741 2d3173c 3d41741 2d3173c 3d41741 2d3173c 3d41741 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: final-run
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# final-run
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0286
- Accuracy: 0.865
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 7
- total_train_batch_size: 224
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.98 | 8 | 1.2950 | 0.71 |
| 1.383 | 1.96 | 16 | 1.1531 | 0.815 |
| 1.2243 | 2.95 | 24 | 1.0636 | 0.86 |
| 1.1189 | 3.93 | 32 | 1.0286 | 0.865 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|