my_awesome_wnut_model

This model is a fine-tuned version of distilbert/distilbert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0832
  • Precision: 0.0
  • Recall: 0.0
  • F1: 0.0
  • Accuracy: 0.9821

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 118 0.0767 0.0 0.0 0.0 0.9725
No log 2.0 236 0.0554 0.0 0.0 0.0 0.9799
No log 3.0 354 0.0695 0.0 0.0 0.0 0.9799
No log 4.0 472 0.0762 0.0 0.0 0.0 0.9795
0.0497 5.0 590 0.0888 0.0 0.0 0.0 0.9804
0.0497 6.0 708 0.0820 0.0 0.0 0.0 0.9812
0.0497 7.0 826 0.0877 0.0 0.0 0.0 0.9814
0.0497 8.0 944 0.0864 0.0 0.0 0.0 0.9815
0.003 9.0 1062 0.0876 0.0 0.0 0.0 0.9823
0.003 10.0 1180 0.0832 0.0 0.0 0.0 0.9821

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.1
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
104
Safetensors
Model size
65.2M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ali972/my_awesome_wnut_model

Finetuned
(232)
this model