File size: 2,963 Bytes
d5b763c 301774e a86170e 301774e d5b763c 301774e d5b763c 4dd76dc d5b763c 69be3c0 301774e 4dd76dc d5b763c 4dd76dc d5b763c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
pipeline_tag: zero-shot-classification
language:
- da
- no
- nb
- sv
license: mit
datasets:
- strombergnlp/danfever
- mnli_da
- mnli_sv
- mnli_nb
- cb_da
- cb_sv
- cb_nb
- fever_sv
- anli_sv
model-index:
- name: nb-bert-large-ner-scandi
results: []
widget:
- example_title: Danish
text: Mexicansk bokser advarer Messi - 'Du skal bede til gud, om at jeg ikke finder dig'
candidate_labels: sundhed, politik, sport, religion
- example_title: Norwegian
text: Folkehelseinstituttets mest optimistiske anslag er at alle voksne er ferdigvaksinert innen midten av september.
candidate_labels: helse, politikk, sport, religion
- example_title: Swedish
text: ”Öppna, öppna” - hundratals demonstrerade mot hårda covidrestriktioner i Peking
candidate_labels: hälsa, politik, sport, religion
---
# ScandiNLI - Natural Language Inference model for Scandinavian Languages
This model is a fine-tuned version of [NbAiLab/nb-bert-large](https://huggingface.co/NbAiLab/nb-bert-large) for Natural Language Inference in Danish, Norwegian Bokmål and Swedish.
It has been fine-tuned on a dataset composed of [DanFEVER](https://aclanthology.org/2021.nodalida-main.pdf#page=439) as well as machine translated versions of [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) and [CommitmentBank](https://doi.org/10.18148/sub/2019.v23i2.601) into all three languages, and machine translated versions of [FEVER](https://aclanthology.org/N18-1074/) and [Adversarial NLI](https://aclanthology.org/2020.acl-main.441/) into Swedish.
The three languages are sampled equally during training, and they're validated on validation splits of [DanFEVER](https://aclanthology.org/2021.nodalida-main.pdf#page=439) and machine translated versions of [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) for Swedish and Norwegian Bokmål, sampled equally.
## Quick start
You can use this model in your scripts as follows:
```python
>>> from transformers import pipeline
>>> classifier = pipeline(
... "zero-shot-classification",
... model="alexandrainst/nb-bert-large-nli-scandi",
... )
>>> classifier(
... "Mexicansk bokser advarer Messi - 'Du skal bede til gud, om at jeg ikke finder dig'",
... candidate_labels=['sundhed', 'politik', 'sport', 'religion'],
... hypothesis_template="Dette eksempel er {}",
... )
{
'labels': ['politik', 'helse', 'sport', 'religion'],
'scores': [0.303, 0.300, 0.204, 0.193],
'sequence': 'Folkehelseinstituttets mest optimistiske anslag er at alle over 18 år er ferdigvaksinert innen midten av september.',
}
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 4242
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9, 0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- max_steps: 50,000 |