File size: 8,033 Bytes
db65986 dd63e74 db65986 2a8458e db65986 ffad7cc db65986 cfa4919 db65986 cfa4919 35a8b96 db65986 4ed76f1 db65986 ffad7cc aaf23fa 64f2adb 828a4b7 64f2adb 828a4b7 64f2adb ffad7cc be361c5 ffad7cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
---
library_name: tf-keras
license: mit
pipeline_tag: image-to-image
---
MSI-Net
=======
📖 [Contextual encoder-decoder network for visual saliency prediction](https://doi.org/10.1016/j.neunet.2020.05.004)
🤗 A demo of this model can be found on [HuggingFace Spaces](https://huggingface.co/spaces/alexanderkroner/saliency).
---
<img src="https://github.com/alexanderkroner/saliency/blob/master/figures/results.jpg?raw=true" width="800">
# Summary
MSI-Net is a visual saliency model that predicts where humans fixate on natural images using a contextual encoder-decoder network trained on eye movement data. The model is based on a convolutional neural network architecture and includes an ASPP module with multiple convolutional layers at different dilation rates to capture multi-scale features in parallel. Moreover, it combines the resulting representations with global scene information towards accurate predictions of visual saliency. MSI-Net consists of roughly 25M parameters and thus presents a suitable choice for applications with limited computational resources. For more information on the model, check out [GitHub](https://github.com/alexanderkroner/saliency) and the corresponding [paper](https://doi.org/10.1016/j.neunet.2020.05.004) or [preprint](https://arxiv.org/abs/1902.06634).
<img src="https://github.com/alexanderkroner/saliency/blob/master/figures/architecture.jpg?raw=true" width="700">
# Requirements
To install the required dependencies, use either `pip` or `conda`:
```
pip install -r requirements.txt
```
```
conda env create -f requirements.yml
```
# Example Use
### Import the dependencies
```python
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from huggingface_hub import snapshot_download
```
### Download the repo files
```python
hf_dir = snapshot_download(repo_id="alexanderkroner/MSI-Net")
```
### Load the saliency model
```python
model = tf.keras.models.load_model(hf_dir)
```
### Load the functions for preprocessing the input and postprocessing the output
```python
def get_target_shape(original_shape):
original_aspect_ratio = original_shape[0] / original_shape[1]
square_mode = abs(original_aspect_ratio - 1.0)
landscape_mode = abs(original_aspect_ratio - 240 / 320)
portrait_mode = abs(original_aspect_ratio - 320 / 240)
best_mode = min(square_mode, landscape_mode, portrait_mode)
if best_mode == square_mode:
target_shape = (320, 320)
elif best_mode == landscape_mode:
target_shape = (240, 320)
else:
target_shape = (320, 240)
return target_shape
def preprocess_input(input_image, target_shape):
input_tensor = tf.expand_dims(input_image, axis=0)
input_tensor = tf.image.resize(
input_tensor, target_shape, preserve_aspect_ratio=True
)
vertical_padding = target_shape[0] - input_tensor.shape[1]
horizontal_padding = target_shape[1] - input_tensor.shape[2]
vertical_padding_1 = vertical_padding // 2
vertical_padding_2 = vertical_padding - vertical_padding_1
horizontal_padding_1 = horizontal_padding // 2
horizontal_padding_2 = horizontal_padding - horizontal_padding_1
input_tensor = tf.pad(
input_tensor,
[
[0, 0],
[vertical_padding_1, vertical_padding_2],
[horizontal_padding_1, horizontal_padding_2],
[0, 0],
],
)
return (
input_tensor,
[vertical_padding_1, vertical_padding_2],
[horizontal_padding_1, horizontal_padding_2],
)
def postprocess_output(
output_tensor, vertical_padding, horizontal_padding, original_shape
):
output_tensor = output_tensor[
:,
vertical_padding[0] : output_tensor.shape[1] - vertical_padding[1],
horizontal_padding[0] : output_tensor.shape[2] - horizontal_padding[1],
:,
]
output_tensor = tf.image.resize(output_tensor, original_shape)
output_array = output_tensor.numpy().squeeze()
output_array = plt.cm.inferno(output_array)[..., :3]
return output_array
```
### Load and preprocess an example image
```python
input_image = tf.keras.utils.load_img(hf_dir + "/example.jpg")
input_image = np.array(input_image, dtype=np.float32)
original_shape = input_image.shape[:2]
target_shape = get_target_shape(original_shape)
input_tensor, vertical_padding, horizontal_padding = preprocess_input(
input_image, target_shape
)
```
### Feed the input tensor to the model
```python
output_tensor = model(input_tensor)["output"]
```
### Postprocess and visualize the output
```python
saliency_map = postprocess_output(
output_tensor, vertical_padding, horizontal_padding, original_shape
)
alpha = 0.65
blended_image = alpha * saliency_map + (1 - alpha) * input_image / 255
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.imshow(input_image / 255)
plt.title("Input Image")
plt.axis("off")
plt.subplot(1, 2, 2)
plt.imshow(blended_image)
plt.title("Saliency Map")
plt.axis("off")
plt.tight_layout()
plt.show()
```
# Datasets
Before training the model on fixation data, the encoder weights were initialized from a VGG16 backbone pre-trained on the ImageNet classification task. The model was then trained on the SALICON dataset, which consists of mouse movement recordings as a proxy for gaze measurements. Finally, the weights can be fine-tuned on human eye tracking data. MSI-Net was therefore also trained on one of the following datasets, although here we only provide the SALICON base model:
| | Number of Images | Viewers per Image | Viewing Duration | Recording Type |
|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|
| [SALICON](https://doi.org/10.1109/CVPR.2015.7298710) | 10,000 | 16 | 5s | Mouse tracking |
| [MIT1003](https://doi.org/10.1109/ICCV.2009.5459462) | 1,003 | 15 | 3s | Eye tracking |
| [CAT2000](https://doi.org/10.48550/arXiv.1505.03581) | 4,000 | 24 | 5s | Eye tracking |
| [DUT-OMRON](https://doi.org/10.1109/CVPR.2013.407) | 5,168 | 5 | 2s | Eye tracking |
| [PASCAL-S](https://doi.org/10.1109/CVPR.2014.43) | 850 | 8 | 2s | Eye tracking |
| [OSIE](https://doi.org/10.1167/14.1.28) | 700 | 15 | 3s | Eye tracking |
| [FIWI](https://doi.org/10.1007/978-3-319-10584-0_3) | 149 | 11 | 5s | Eye tracking |
<br> Evaluations of our model are available on the original [MIT saliency benchmark](http://saliency.mit.edu/results.html) and the updated [MIT/Tübingen saliency benchmark](https://saliency.tuebingen.ai/results.html). Results for the latter are derived from a probabilistic representation of predicted saliency maps with metric-specific postprocessing for a fair model comparison.
# Limitations
MSI-Net was trained on human fixation data collected under a free-viewing paradigm. Therefore, the predicted saliency maps may not generalize to viewers that received task instructions during the experiment. It must also be noted that the training data consisted primarily of natural images. As a result, gaze predictions for specific image types (e.g., fractals, patterns) or adversarial examples may not be very accurate.
Another limitation is that saliency-based cropping algorithms, formerly applied to images uploaded to the social media platform Twitter between 2018 and 2021, have shown [biases in terms of race and gender](https://doi.org/10.1145/3479594). It is thus important to use saliency models with caution and acknowledge the potential risks that are involved in their application.
# Reference
If you find this code or model useful, please cite the following paper:
```
@article{kroner2020contextual,
title={Contextual encoder-decoder network for visual saliency prediction},
author={Kroner, Alexander and Senden, Mario and Driessens, Kurt and Goebel, Rainer},
url={http://www.sciencedirect.com/science/article/pii/S0893608020301660},
doi={https://doi.org/10.1016/j.neunet.2020.05.004},
journal={Neural Networks},
publisher={Elsevier},
year={2020},
volume={129},
pages={261--270},
issn={0893-6080}
}
``` |