cva-flow-weighted-classifier2

This model is a fine-tuned version of alex-miller/ODABert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3914
  • Accuracy: 0.9236
  • F1: 0.9453
  • Precision: 0.9694
  • Recall: 0.9223

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.5521 1.0 18 0.3662 0.7986 0.8432 0.9512 0.7573
0.3114 2.0 36 0.4227 0.8125 0.8508 0.9872 0.7476
0.1924 3.0 54 0.2520 0.9167 0.9394 0.9789 0.9029
0.0878 4.0 72 0.3462 0.9097 0.9340 0.9787 0.8932
0.0506 5.0 90 0.3421 0.9028 0.93 0.9588 0.9029
0.0467 6.0 108 0.3557 0.9097 0.9347 0.9688 0.9029
0.0157 7.0 126 0.3753 0.9306 0.9505 0.9697 0.9320
0.0189 8.0 144 0.3314 0.9306 0.9495 0.9895 0.9126
0.0054 9.0 162 0.3842 0.9236 0.9453 0.9694 0.9223
0.0065 10.0 180 0.3914 0.9236 0.9453 0.9694 0.9223

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
10
Safetensors
Model size
168M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for alex-miller/cva-flow-weighted-classifier2

Finetuned
(16)
this model