File size: 13,674 Bytes
86d04d3 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d88efaa0d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d88efaa0dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d88efaa0e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d88efaa0ee0>", "_build": "<function ActorCriticPolicy._build at 0x7d88efaa0f70>", "forward": "<function ActorCriticPolicy.forward at 0x7d88efaa1000>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d88efaa1090>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d88efaa1120>", "_predict": "<function ActorCriticPolicy._predict at 0x7d88efaa11b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d88efaa1240>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d88efaa12d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d88efaa1360>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d88efc2fc80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716974024158731003, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABP6UT6w5ks/DqesPZM5Fb/4ChU+Upy+OwAAAAAAAAAALVaePsWhDD8N8OQ9/c/wvt7RlT7e/Ou8AAAAAAAAAABN6m+9jyIhuqa95LiRBqmydTFzuwXcBTgAAAAAAAAAAOazez1hYaQ/a4cSP6yRLr96rVC6nfkrPgAAAAAAAAAA+iQYviE3Xj4nmo0+NfelvjtNjj12+xQ8AAAAAAAAAABmuEC8Eq+2P8xLGL/F1LI+CQNdPHCSCD4AAAAAAAAAAE2ULz6BXUE+YoklvlCPh75ugTc7DsojPAAAAAAAAAAAzZllvbjGr7sJP4M7VuFfPMKgGL0mqEA9AACAPwAAgD8zEVQ+MdC6Pj5/LL5ZT7G+dsKnPRX8lr0AAAAAAAAAAHOO7L0Sk6o/sIHVvu6T675PJUa+KpeavgAAAAAAAAAAzYq2vVzjarpW/T4zpYBxrzJAgblD+sCzAACAPwAAgD+t7BI+lVI2Pgrp9L6Ebju+ZRMsvh3pfz0AAAAAAAAAAA09kD7hFjW9uC9zO9XhWrx2aJ2+7lAgvQAAgD8AAIA/cwrDPXUOwj9tjLw+ZPG5vSIlQD0glFw+AAAAAAAAAACt4gg+Jj+YPk3Pdr0hNsm+LWipPYbXML0AAAAAAAAAADP4kz4hiCk/HmSqPeqQG7+qb5s+kgMDvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHmPMnqmj2MAWyUS9eMAXSUR0CiQgYHX2/SdX2UKGgGR0BvuGwosqaxaAdNBAFoCEdAokJpLmITG3V9lChoBkdAcEOKMNtqH2gHS9VoCEdAokJ38Q7LdXV9lChoBkdAci0BBiTdL2gHS9NoCEdAokJ7DsMRYnV9lChoBkdAbzsXSjQAuWgHS8ZoCEdAokKlhiLEUHV9lChoBkdAcQWjLjghr2gHS8toCEdAokKqeyzHCHV9lChoBkdAcjAtOmBOHmgHS9RoCEdAokLh9w3o93V9lChoBkdAcsKRcu8K5WgHTSsBaAhHQKJDBeAuqWF1fZQoaAZHQHFY20JF9a5oB0vAaAhHQKJDWQuEmIF1fZQoaAZHQHHKsxj8UEhoB0vlaAhHQKJDXUhFEzB1fZQoaAZHQHGe/KISDh9oB0vLaAhHQKJDaabWmP51fZQoaAZHQHHLj+JgsshoB0vAaAhHQKJDoBkqc3F1fZQoaAZHQG8QFMRHww1oB0vHaAhHQKJDwOKfnOl1fZQoaAZHQHBDRaTwDvFoB0vHaAhHQKJEzNbC79R1fZQoaAZHQHHQbhFVktpoB0vLaAhHQKJE/1aGHpN1fZQoaAZHQHKxL9hqj8FoB0vlaAhHQKJFGB6rvLJ1fZQoaAZHQHCfrQHAymBoB0vPaAhHQKJGDOZ9d/t1fZQoaAZHQE/ohTwUg0VoB0vFaAhHQKJGGT8pCrt1fZQoaAZHQFCvpz90ihZoB0uxaAhHQKJGKmoBJZp1fZQoaAZHQHGjRvm5lOJoB0vLaAhHQKJGNVFQVKx1fZQoaAZHQHIfFyWAwwloB0vJaAhHQKJGeu14Pf91fZQoaAZHQHFk4rnTy8VoB0v0aAhHQKJG0w8nuzB1fZQoaAZHQHMLJSNwR5FoB00BAWgIR0CiRwvPszEadX2UKGgGR0BzsTJuEVWTaAdNHQFoCEdAokcqAWi1zHV9lChoBkdAcdYNPgvUSmgHS9ZoCEdAokdkWhysCHV9lChoBkdAcnUNQCSzPmgHS9NoCEdAokdsHWz4UXV9lChoBkdActhO1fE4vWgHS/NoCEdAokfvm7rcCnV9lChoBkdAcHyRUm2LHmgHS/1oCEdAokid7hNucnV9lChoBkdAbmOChew9q2gHS/5oCEdAokjbZpSJj3V9lChoBkdAcQPwLE1l5GgHS85oCEdAolT0uOCGvnV9lChoBkdAT1w5q/M4cWgHS35oCEdAolUmZof0VnV9lChoBkdAcMti7kGRm2gHS+NoCEdAolVqxiXpn3V9lChoBkdAcO5JVbRne2gHS8hoCEdAolWrpaA4GXV9lChoBkdAcClNLDhtL2gHS8xoCEdAolXTq6e5F3V9lChoBkdAbJiDqW1MNGgHS9loCEdAolYJf2K2rnV9lChoBkdAcYQHZbpu/GgHS+VoCEdAolYpbyH2y3V9lChoBkdAce1YZEUj9mgHS+toCEdAolak/lhgE3V9lChoBkdAcfAJWeYlY2gHS8loCEdAolbht+CsfnV9lChoBkdAcRtIYFaB7WgHS9doCEdAolbn1BdD6XV9lChoBkdAciojm0VrRGgHTUUBaAhHQKJW8HRkVet1fZQoaAZHQHFXUulGgBdoB0vRaAhHQKJW/1B+nZV1fZQoaAZHQHH+abSZ0CBoB0vvaAhHQKJXC4d6syV1fZQoaAZHQHFLnWJ79htoB0vlaAhHQKJXw+X7cfx1fZQoaAZHQHMvhkEs8PpoB0vHaAhHQKJX5BCUorp1fZQoaAZHQHF973sXzlNoB0vZaAhHQKJYCoybhFV1fZQoaAZHQHCDMx9G7SRoB0vAaAhHQKJYSqNp/PR1fZQoaAZHQHNjT3IuGsVoB0vaaAhHQKJY0/qxC6Z1fZQoaAZHQHAPCih37k5oB0vQaAhHQKJY6cy31Bd1fZQoaAZHQHCTqePJaJRoB0vBaAhHQKJZNLRrrPd1fZQoaAZHQHGmjm8ujAVoB0vZaAhHQKJZRGZNO/N1fZQoaAZHQHKfBCdBjWloB0vWaAhHQKJZWdpZfUp1fZQoaAZHQHJse23KB/ZoB0vXaAhHQKJZmkgOjIt1fZQoaAZHQHIfV2mpEQZoB0vGaAhHQKJZ45J9RaZ1fZQoaAZHQHLOgjdHlOpoB0u+aAhHQKJZ6TVUdaN1fZQoaAZHQHH2gdKdxyZoB0vqaAhHQKJafl5nlGR1fZQoaAZHQHKRuGTLW7RoB0v1aAhHQKJapoIv8Il1fZQoaAZHQHFewIyCWeJoB00OAWgIR0CiWt5R8+ibdX2UKGgGR0BxVJE3Kji5aAdL0mgIR0CiWxulO45MdX2UKGgGR0Bx1OD/VAiWaAdL8WgIR0CiW3wokRjCdX2UKGgGR0Bw/IuIyj59aAdLumgIR0CiW7LT6SDAdX2UKGgGR0BP9sIVuaWpaAdLhGgIR0CiW7LWRRuTdX2UKGgGR0BvVayD7IkraAdLx2gIR0CiW/8UuctodX2UKGgGR0By577gsK9gaAdL8mgIR0CiW/93bEgodX2UKGgGR0Bx3ljNIK+jaAdNAwFoCEdAolwIn2Iwd3V9lChoBkdAc0G3lS0jT2gHTVsBaAhHQKJcWMglnh91fZQoaAZHQHEUEdJaq0doB0vmaAhHQKJcttbcGkh1fZQoaAZHQHI6ixVyWAxoB0voaAhHQKJc4uDjBEd1fZQoaAZHQHHsl58jRlZoB00AAWgIR0CiXSdoN/e+dX2UKGgGR0BuG+c2BJ7LaAdL1WgIR0CiXTHcL0BfdX2UKGgGR0BRFkmY0EX+aAdLqmgIR0CiXT7K7qY7dX2UKGgGR0BPS8ejmCAdaAdLoGgIR0CiXXecH4XXdX2UKGgGR0Bv3iVhTfixaAdL8WgIR0CiXYcriEQHdX2UKGgGR0BzM6pBHCoCaAdL22gIR0CiXb/k/8l5dX2UKGgGR0Bypt+KCQLeaAdL0mgIR0CiXsZwfhdddX2UKGgGR0Bw/W/wiJO4aAdNBgFoCEdAol7MuzyBkXV9lChoBkdAcRMYSxqwhWgHS8RoCEdAol7dcQiA2HV9lChoBkdAcVo/J/5Ly2gHS85oCEdAol8RmRNh3XV9lChoBkdAbnPAQg9vCWgHS+hoCEdAol8oq5LAYnV9lChoBkdAcPhKcurZJ2gHS7toCEdAol+WmrKeTXV9lChoBkdAcyQXPqs2emgHTRgBaAhHQKJfyRp1zQx1fZQoaAZHQHD/NDD0lJJoB0vhaAhHQKJfza7EpAl1fZQoaAZHQHG50Gu9vjxoB0vtaAhHQKJguIF/x2B1fZQoaAZHQHHG4q0+kgxoB0vEaAhHQKJg2rilzlt1fZQoaAZHQHHqHtOVPepoB0v5aAhHQKJhaMH8jzJ1fZQoaAZHQHFA2L9/BnBoB0v3aAhHQKJhjgQ6IWR1fZQoaAZHQHFp8cIZ62RoB0vlaAhHQKJhjrCWNWF1fZQoaAZHQHGZvk/8l5ZoB0vbaAhHQKJh2HM2WIJ1fZQoaAZHQHDIxu4wyqNoB0vWaAhHQKJjU3w1BMV1fZQoaAZHQHIW5qIrOJNoB0vdaAhHQKJjoC+10DF1fZQoaAZHQFQ5uUUwi7loB0vFaAhHQKJkDgtvn8t1fZQoaAZHQHGVeTV2A5JoB0v3aAhHQKJkNVMmF8J1fZQoaAZHQHF6JR8+ialoB0v0aAhHQKJksQIUrTZ1fZQoaAZHQHImyGnGbTdoB0v7aAhHQKJkvwTdtVJ1fZQoaAZHQHGJWRq46OpoB0vuaAhHQKJlYhbGFSN1fZQoaAZHQHM4mfChvitoB0v1aAhHQKJllIYm9g51fZQoaAZHQFD5/oaDPGBoB0ufaAhHQKJl1VvuPWB1fZQoaAZHQHHXd4RmK65oB0v1aAhHQKJmzuKoAGV1fZQoaAZHQHEayJoCdSVoB0vwaAhHQKJm3G8274B1fZQoaAZHQHFapPM0P6NoB0vmaAhHQKJnKpMHryF1fZQoaAZHQHHh3QQcxTNoB0vpaAhHQKJnWVbiZOV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |