alex-huebner
commited on
Commit
•
86d04d3
1
Parent(s):
bf9e21d
Second try with 2 million time steps
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +26 -26
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 276.03 +/- 24.34
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f624f375ab0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f624f375b40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f624f375bd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f624f375c60>", "_build": "<function ActorCriticPolicy._build at 0x7f624f375cf0>", "forward": "<function ActorCriticPolicy.forward at 0x7f624f375d80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f624f375e10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f624f375ea0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f624f375f30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f624f375fc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f624f376050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f624f3760e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f624f325e40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716900077970119182, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAPpbAz7BmLY+u8M0vTmte767N289jC2eOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIBbz9S/CaMAWyUTQUBjAF0lEdAnwD61G9YfXV9lChoBkdAcs5iY9gWrWgHTSIBaAhHQJ8C0CHRCyB1fZQoaAZHQHJTijtXxONoB01KAWgIR0CfBNsvqTr3dX2UKGgGR0BwfOBlMAWBaAdNSAFoCEdAnwg6/ATIvXV9lChoBkdAb1dX8O09hmgHTQsBaAhHQJ8J2e9SMtN1fZQoaAZHQHDxCeZof0VoB01nAWgIR0CfDAY4ACGOdX2UKGgGR0BxCps/IKc/aAdNNgFoCEdAnw81wT/Q0HV9lChoBkdAbc+LG7z06GgHTQYBaAhHQJ8Q5+b3Gn51fZQoaAZHQHF9ghnrY5FoB00LAmgIR0CfFCjo6jnFdX2UKGgGR0Bwfr8P4EfUaAdNEwFoCEdAnxc0u14PgHV9lChoBkdAOjPZAY51eWgHS99oCEdAnxim7jDKo3V9lChoBkdAcMVc3VCoj2gHTTABaAhHQJ8aiW4Vh1F1fZQoaAZHQHDQcr3Cbc5oB0v6aAhHQJ8cD2ZiNKh1fZQoaAZHQGvmgDJU5uJoB00TAWgIR0CfHxutwJgLdX2UKGgGR0ByhTtQbdadaAdN0wFoCEdAnyIiAYpDu3V9lChoBkdAcYqaouPFN2gHTVECaAhHQJ8ov8baRIV1fZQoaAZHQGupRfnfVI9oB00SAWgIR0CfKzDCP6sRdX2UKGgGR0A3eTLW7OE/aAdL9GgIR0CfLYKB/ZuidX2UKGgGR0Bxah1ie/YbaAdNEgFoCEdAny8zwUg0THV9lChoBkdAcdRbb1yvLWgHTQcBaAhHQJ8yOGWUr091fZQoaAZHQHKPZtm+TNdoB02tAmgIR0CfNnfNiYsvdX2UKGgGR0BxPHgsK9f1aAdNGQFoCEdAnzl+gte2NXV9lChoBkdAcgtCE6DGtWgHTWkBaAhHQJ87pcOby6N1fZQoaAZHQG1/6fJ3gUFoB00IAWgIR0CfPTaS9ugpdX2UKGgGR0Bu89vl2eQNaAdNEQFoCEdAnz7kQsf7rXV9lChoBkdAbneMhHLA6GgHTQsBaAhHQJ9B4bR4QjF1fZQoaAZHQCFp4fOlfqpoB0vcaAhHQJ9DMC1Z1V51fZQoaAZHQHDSu58Sf19oB00jAWgIR0CfROpX6qKhdX2UKGgGR0BxXgB91EE1aAdNMAFoCEdAn0g5gG8mKXV9lChoBkdAb6Y88La24WgHS/5oCEdAn0nnMINVinV9lChoBkdAcPjD28IzFmgHTRgBaAhHQJ9Llnf2saN1fZQoaAZHQHC5itihFmZoB00dAWgIR0CfTVoiLVFydX2UKGgGR0Bd0gKjSG8FaAdN6ANoCEdAn1Ur+cYqG3V9lChoBkdATw+R7qptJmgHTQ8BaAhHQJ9ZJkZrHlx1fZQoaAZHQG/vebExZdRoB0v8aAhHQJ9bIFaB7NV1fZQoaAZHQHBgy1y/9HdoB00hAWgIR0CfXZUQ04zadX2UKGgGR0BxwNTQ3PzGaAdL8mgIR0CfX58kleF+dX2UKGgGR0BwkKj9GZuyaAdNCAFoCEdAn2NA/cFhX3V9lChoBkdAbXy5Jbt7bGgHTRUBaAhHQJ9lEjcEeQx1fZQoaAZHQGsrpsO5J9RoB00JAWgIR0CfZsFgUlAvdX2UKGgGR0BsKw8jiXIEaAdNDwFoCEdAn2heHi3ocXV9lChoBkdAQE/09QoCuGgHS9poCEdAn2sV6/qPfnV9lChoBkdAcRpN7jT8YWgHS/hoCEdAn2ymNNrTIHV9lChoBkdAcHMVcD8tPGgHS/JoCEdAn24jUVi4KHV9lChoBkdAcPCmTTvy9WgHTSQBaAhHQJ9v8vg3tKJ1fZQoaAZHQHF9EAYHgP5oB0vxaAhHQJ9ywTmGM4t1fZQoaAZHQHHU+zQeFL5oB00CAWgIR0CfdF1lXiiqdX2UKGgGR0BxHOQwK0D2aAdNOwFoCEdAn3ZF7Qb++HV9lChoBkdAcBzaPjn3c2gHTQgBaAhHQJ936rn1WbR1fZQoaAZHQHAIPdhy8z1oB00CAWgIR0Cfet7nPmgbdX2UKGgGR0BxDZHUc4o7aAdNPgFoCEdAn3zYy44IbHV9lChoBkdAcSgLFXJYDGgHS+FoCEdAn34yXIEKV3V9lChoBkdAcCsVn27FsGgHTT0BaAhHQJ+BbkfcN6R1fZQoaAZHQHGQqUqx1PpoB01RAWgIR0Cfg43IMjNZdX2UKGgGR0BzRnpbD/EPaAdL82gIR0CfhP92ovSMdX2UKGgGR0BxMqZc9nscaAdNHgFoCEdAn4a1pwjt5XV9lChoBkfAKq5BcAzYVmgHS+poCEdAn4l2nfl6q3V9lChoBkdAPY6pxWDHwWgHS9JoCEdAn4ss2m51/3V9lChoBkdAcR6CcPOIImgHS+loCEdAn40IjB2wFHV9lChoBkdAPH+qm0mdAmgHS+hoCEdAn47Uh3aBZ3V9lChoBkfAK9Y2sJY1YWgHS9xoCEdAn5DC7TUiIXV9lChoBkdAbibsOXmeUmgHTQEBaAhHQJ+U/Zdv8651fZQoaAZHQGPeU8/2TPloB03oA2gIR0CfnUP3ztkXdX2UKGgGR0BuUORaHKwIaAdNDQFoCEdAn57or8R+SnV9lChoBkdAcJKzByjpLWgHTQUBaAhHQJ+gc4WDYiB1fZQoaAZHQHBt/rGBFuxoB0v2aAhHQJ+h9qFh5Pd1fZQoaAZHQG43ebNKRMhoB00MAWgIR0CfpPSsr/bTdX2UKGgGR0BwpyRZEDyOaAdNCwFoCEdAn6aScPOIInV9lChoBkdAcfrGnGbTdGgHTT0BaAhHQJ+ofcAR02d1fZQoaAZHQG7KM5OrQw9oB0v2aAhHQJ+rS+RHPNV1fZQoaAZHQG0FtQ9A5aNoB00ZAWgIR0CfrQ2E0zj4dX2UKGgGR0BvVfczqKP5aAdNMAFoCEdAn67zfBN21XV9lChoBkdAcHpYKpkwvmgHTRsBaAhHQJ+wsRIz3yt1fZQoaAZHQHDyvustCiRoB0vtaAhHQJ+zrfCQ9zR1fZQoaAZHQHB5Fpwjt5VoB0v1aAhHQJ+1PfWMCLd1fZQoaAZHQG2Upx//echoB00FAWgIR0CftufMwDeTdX2UKGgGR0Bw6h2LYPGyaAdNJwFoCEdAn7i8UIsyz3V9lChoBkdAcptgUUO/cmgHTQ8BaAhHQJ+72ad+Xqt1fZQoaAZHQHMFjQmeDnNoB00tAWgIR0CfvdG21D0EdX2UKGgGR0BxM8zKs+3ZaAdNBwFoCEdAn7+yXQdCFHV9lChoBkdAbx+DqW1MNGgHTRwBaAhHQJ/CD9ehPCV1fZQoaAZHQHFMurELpiZoB00VAWgIR0CfxgOmBOHndX2UKGgGR0BwNlUgjhUBaAdNBAFoCEdAn8hOpbUwz3V9lChoBkdAcrZKISDh+GgHTTkBaAhHQJ/LGEYfnwJ1fZQoaAZHQCyCIcinpB5oB0u1aAhHQJ/MbWe6I311fZQoaAZHQHB88vduYQdoB01WAWgIR0Cfz/2nKnvVdX2UKGgGR0BvjxCOWBz4aAdNAgFoCEdAn9Gmjj7yhHV9lChoBkdAcGOO4oZydWgHTT0BaAhHQJ/Tk8FINEx1fZQoaAZHQHBUk2cawUxoB0vqaAhHQJ/WWlhw2l51fZQoaAZHQG77a72+PBBoB00PAWgIR0Cf2ArULDyfdX2UKGgGR0Bu0VWQwK0EaAdNPQFoCEdAn9n/ukUKzHV9lChoBkdAcMLdGiHqNmgHTR0BaAhHQJ/bvk7wKBx1fZQoaAZHQGObuscQyyloB03oA2gIR0Cf40GxUvPDdX2UKGgGR0BtuQV45cTraAdNBAFoCEdAn+Y0V8CxNnV9lChoBkdAcSMaKDTScGgHTRsBaAhHQJ/n7toi9qV1fZQoaAZHQHB8C39aUzNoB01kAWgIR0Cf6h7iQ1aXdX2UKGgGR0BvSpOnEVFhaAdNVAFoCEdAn+2ObZvkzXV9lChoBkdAcZB20zCUHWgHS+5oCEdAn+7+KoAGS3V9lChoBkdAbvlP+GXXy2gHS+toCEdAn/ByU5dWyXV9lChoBkdAcAbrcTJyQ2gHTSoBaAhHQJ/yTDl5nlJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVOwMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoRcpHjtjbpxLhWrlCRhbgq7ACMA2luY5SKEXmqI/7IGp3VchUKe6IiPY4AdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVpAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQ/NNk/EcGCsiq/uQZDybkJowDaW5jlIoRR+dmS+NYwaqvdSuNC3n5hQB1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpSKBRB3d6sAdWJ1Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d88efaa0d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d88efaa0dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d88efaa0e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d88efaa0ee0>", "_build": "<function ActorCriticPolicy._build at 0x7d88efaa0f70>", "forward": "<function ActorCriticPolicy.forward at 0x7d88efaa1000>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d88efaa1090>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d88efaa1120>", "_predict": "<function ActorCriticPolicy._predict at 0x7d88efaa11b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d88efaa1240>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d88efaa12d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d88efaa1360>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d88efc2fc80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716974024158731003, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABP6UT6w5ks/DqesPZM5Fb/4ChU+Upy+OwAAAAAAAAAALVaePsWhDD8N8OQ9/c/wvt7RlT7e/Ou8AAAAAAAAAABN6m+9jyIhuqa95LiRBqmydTFzuwXcBTgAAAAAAAAAAOazez1hYaQ/a4cSP6yRLr96rVC6nfkrPgAAAAAAAAAA+iQYviE3Xj4nmo0+NfelvjtNjj12+xQ8AAAAAAAAAABmuEC8Eq+2P8xLGL/F1LI+CQNdPHCSCD4AAAAAAAAAAE2ULz6BXUE+YoklvlCPh75ugTc7DsojPAAAAAAAAAAAzZllvbjGr7sJP4M7VuFfPMKgGL0mqEA9AACAPwAAgD8zEVQ+MdC6Pj5/LL5ZT7G+dsKnPRX8lr0AAAAAAAAAAHOO7L0Sk6o/sIHVvu6T675PJUa+KpeavgAAAAAAAAAAzYq2vVzjarpW/T4zpYBxrzJAgblD+sCzAACAPwAAgD+t7BI+lVI2Pgrp9L6Ebju+ZRMsvh3pfz0AAAAAAAAAAA09kD7hFjW9uC9zO9XhWrx2aJ2+7lAgvQAAgD8AAIA/cwrDPXUOwj9tjLw+ZPG5vSIlQD0glFw+AAAAAAAAAACt4gg+Jj+YPk3Pdr0hNsm+LWipPYbXML0AAAAAAAAAADP4kz4hiCk/HmSqPeqQG7+qb5s+kgMDvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHmPMnqmj2MAWyUS9eMAXSUR0CiQgYHX2/SdX2UKGgGR0BvuGwosqaxaAdNBAFoCEdAokJpLmITG3V9lChoBkdAcEOKMNtqH2gHS9VoCEdAokJ38Q7LdXV9lChoBkdAci0BBiTdL2gHS9NoCEdAokJ7DsMRYnV9lChoBkdAbzsXSjQAuWgHS8ZoCEdAokKlhiLEUHV9lChoBkdAcQWjLjghr2gHS8toCEdAokKqeyzHCHV9lChoBkdAcjAtOmBOHmgHS9RoCEdAokLh9w3o93V9lChoBkdAcsKRcu8K5WgHTSsBaAhHQKJDBeAuqWF1fZQoaAZHQHFY20JF9a5oB0vAaAhHQKJDWQuEmIF1fZQoaAZHQHHKsxj8UEhoB0vlaAhHQKJDXUhFEzB1fZQoaAZHQHGe/KISDh9oB0vLaAhHQKJDaabWmP51fZQoaAZHQHHLj+JgsshoB0vAaAhHQKJDoBkqc3F1fZQoaAZHQG8QFMRHww1oB0vHaAhHQKJDwOKfnOl1fZQoaAZHQHBDRaTwDvFoB0vHaAhHQKJEzNbC79R1fZQoaAZHQHHQbhFVktpoB0vLaAhHQKJE/1aGHpN1fZQoaAZHQHKxL9hqj8FoB0vlaAhHQKJFGB6rvLJ1fZQoaAZHQHCfrQHAymBoB0vPaAhHQKJGDOZ9d/t1fZQoaAZHQE/ohTwUg0VoB0vFaAhHQKJGGT8pCrt1fZQoaAZHQFCvpz90ihZoB0uxaAhHQKJGKmoBJZp1fZQoaAZHQHGjRvm5lOJoB0vLaAhHQKJGNVFQVKx1fZQoaAZHQHIfFyWAwwloB0vJaAhHQKJGeu14Pf91fZQoaAZHQHFk4rnTy8VoB0v0aAhHQKJG0w8nuzB1fZQoaAZHQHMLJSNwR5FoB00BAWgIR0CiRwvPszEadX2UKGgGR0BzsTJuEVWTaAdNHQFoCEdAokcqAWi1zHV9lChoBkdAcdYNPgvUSmgHS9ZoCEdAokdkWhysCHV9lChoBkdAcnUNQCSzPmgHS9NoCEdAokdsHWz4UXV9lChoBkdActhO1fE4vWgHS/NoCEdAokfvm7rcCnV9lChoBkdAcHyRUm2LHmgHS/1oCEdAokid7hNucnV9lChoBkdAbmOChew9q2gHS/5oCEdAokjbZpSJj3V9lChoBkdAcQPwLE1l5GgHS85oCEdAolT0uOCGvnV9lChoBkdAT1w5q/M4cWgHS35oCEdAolUmZof0VnV9lChoBkdAcMti7kGRm2gHS+NoCEdAolVqxiXpn3V9lChoBkdAcO5JVbRne2gHS8hoCEdAolWrpaA4GXV9lChoBkdAcClNLDhtL2gHS8xoCEdAolXTq6e5F3V9lChoBkdAbJiDqW1MNGgHS9loCEdAolYJf2K2rnV9lChoBkdAcYQHZbpu/GgHS+VoCEdAolYpbyH2y3V9lChoBkdAce1YZEUj9mgHS+toCEdAolak/lhgE3V9lChoBkdAcfAJWeYlY2gHS8loCEdAolbht+CsfnV9lChoBkdAcRtIYFaB7WgHS9doCEdAolbn1BdD6XV9lChoBkdAciojm0VrRGgHTUUBaAhHQKJW8HRkVet1fZQoaAZHQHFXUulGgBdoB0vRaAhHQKJW/1B+nZV1fZQoaAZHQHH+abSZ0CBoB0vvaAhHQKJXC4d6syV1fZQoaAZHQHFLnWJ79htoB0vlaAhHQKJXw+X7cfx1fZQoaAZHQHMvhkEs8PpoB0vHaAhHQKJX5BCUorp1fZQoaAZHQHF973sXzlNoB0vZaAhHQKJYCoybhFV1fZQoaAZHQHCDMx9G7SRoB0vAaAhHQKJYSqNp/PR1fZQoaAZHQHNjT3IuGsVoB0vaaAhHQKJY0/qxC6Z1fZQoaAZHQHAPCih37k5oB0vQaAhHQKJY6cy31Bd1fZQoaAZHQHCTqePJaJRoB0vBaAhHQKJZNLRrrPd1fZQoaAZHQHGmjm8ujAVoB0vZaAhHQKJZRGZNO/N1fZQoaAZHQHKfBCdBjWloB0vWaAhHQKJZWdpZfUp1fZQoaAZHQHJse23KB/ZoB0vXaAhHQKJZmkgOjIt1fZQoaAZHQHIfV2mpEQZoB0vGaAhHQKJZ45J9RaZ1fZQoaAZHQHLOgjdHlOpoB0u+aAhHQKJZ6TVUdaN1fZQoaAZHQHH2gdKdxyZoB0vqaAhHQKJafl5nlGR1fZQoaAZHQHKRuGTLW7RoB0v1aAhHQKJapoIv8Il1fZQoaAZHQHFewIyCWeJoB00OAWgIR0CiWt5R8+ibdX2UKGgGR0BxVJE3Kji5aAdL0mgIR0CiWxulO45MdX2UKGgGR0Bx1OD/VAiWaAdL8WgIR0CiW3wokRjCdX2UKGgGR0Bw/IuIyj59aAdLumgIR0CiW7LT6SDAdX2UKGgGR0BP9sIVuaWpaAdLhGgIR0CiW7LWRRuTdX2UKGgGR0BvVayD7IkraAdLx2gIR0CiW/8UuctodX2UKGgGR0By577gsK9gaAdL8mgIR0CiW/93bEgodX2UKGgGR0Bx3ljNIK+jaAdNAwFoCEdAolwIn2Iwd3V9lChoBkdAc0G3lS0jT2gHTVsBaAhHQKJcWMglnh91fZQoaAZHQHEUEdJaq0doB0vmaAhHQKJcttbcGkh1fZQoaAZHQHI6ixVyWAxoB0voaAhHQKJc4uDjBEd1fZQoaAZHQHHsl58jRlZoB00AAWgIR0CiXSdoN/e+dX2UKGgGR0BuG+c2BJ7LaAdL1WgIR0CiXTHcL0BfdX2UKGgGR0BRFkmY0EX+aAdLqmgIR0CiXT7K7qY7dX2UKGgGR0BPS8ejmCAdaAdLoGgIR0CiXXecH4XXdX2UKGgGR0Bv3iVhTfixaAdL8WgIR0CiXYcriEQHdX2UKGgGR0BzM6pBHCoCaAdL22gIR0CiXb/k/8l5dX2UKGgGR0Bypt+KCQLeaAdL0mgIR0CiXsZwfhdddX2UKGgGR0Bw/W/wiJO4aAdNBgFoCEdAol7MuzyBkXV9lChoBkdAcRMYSxqwhWgHS8RoCEdAol7dcQiA2HV9lChoBkdAcVo/J/5Ly2gHS85oCEdAol8RmRNh3XV9lChoBkdAbnPAQg9vCWgHS+hoCEdAol8oq5LAYnV9lChoBkdAcPhKcurZJ2gHS7toCEdAol+WmrKeTXV9lChoBkdAcyQXPqs2emgHTRgBaAhHQKJfyRp1zQx1fZQoaAZHQHD/NDD0lJJoB0vhaAhHQKJfza7EpAl1fZQoaAZHQHG50Gu9vjxoB0vtaAhHQKJguIF/x2B1fZQoaAZHQHHG4q0+kgxoB0vEaAhHQKJg2rilzlt1fZQoaAZHQHHqHtOVPepoB0v5aAhHQKJhaMH8jzJ1fZQoaAZHQHFA2L9/BnBoB0v3aAhHQKJhjgQ6IWR1fZQoaAZHQHFp8cIZ62RoB0vlaAhHQKJhjrCWNWF1fZQoaAZHQHGZvk/8l5ZoB0vbaAhHQKJh2HM2WIJ1fZQoaAZHQHDIxu4wyqNoB0vWaAhHQKJjU3w1BMV1fZQoaAZHQHIW5qIrOJNoB0vdaAhHQKJjoC+10DF1fZQoaAZHQFQ5uUUwi7loB0vFaAhHQKJkDgtvn8t1fZQoaAZHQHGVeTV2A5JoB0v3aAhHQKJkNVMmF8J1fZQoaAZHQHF6JR8+ialoB0v0aAhHQKJksQIUrTZ1fZQoaAZHQHImyGnGbTdoB0v7aAhHQKJkvwTdtVJ1fZQoaAZHQHGJWRq46OpoB0vuaAhHQKJlYhbGFSN1fZQoaAZHQHM4mfChvitoB0v1aAhHQKJllIYm9g51fZQoaAZHQFD5/oaDPGBoB0ufaAhHQKJl1VvuPWB1fZQoaAZHQHHXd4RmK65oB0v1aAhHQKJmzuKoAGV1fZQoaAZHQHEayJoCdSVoB0vwaAhHQKJm3G8274B1fZQoaAZHQHFapPM0P6NoB0vmaAhHQKJnKpMHryF1fZQoaAZHQHHh3QQcxTNoB0vpaAhHQKJnWVbiZOV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7952ceb7333b1f959e610d68e772d6639a2551d5e55ce83f8075521a44ebbc64
|
3 |
+
size 147457
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,57 +4,57 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
-
":serialized:": "
|
58 |
"dtype": "float32",
|
59 |
"bounded_below": "[ True True True True True True True True]",
|
60 |
"bounded_above": "[ True True True True True True True True]",
|
@@ -65,18 +65,18 @@
|
|
65 |
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
-
"_np_random":
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
-
":serialized:": "
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
76 |
"dtype": "int64",
|
77 |
-
"_np_random":
|
78 |
},
|
79 |
-
"n_envs":
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7d88efaa0d30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d88efaa0dc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d88efaa0e50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d88efaa0ee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7d88efaa0f70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7d88efaa1000>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7d88efaa1090>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d88efaa1120>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7d88efaa11b0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d88efaa1240>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d88efaa12d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7d88efaa1360>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d88efc2fc80>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2015232,
|
25 |
+
"_total_timesteps": 2000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1716974024158731003,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABP6UT6w5ks/DqesPZM5Fb/4ChU+Upy+OwAAAAAAAAAALVaePsWhDD8N8OQ9/c/wvt7RlT7e/Ou8AAAAAAAAAABN6m+9jyIhuqa95LiRBqmydTFzuwXcBTgAAAAAAAAAAOazez1hYaQ/a4cSP6yRLr96rVC6nfkrPgAAAAAAAAAA+iQYviE3Xj4nmo0+NfelvjtNjj12+xQ8AAAAAAAAAABmuEC8Eq+2P8xLGL/F1LI+CQNdPHCSCD4AAAAAAAAAAE2ULz6BXUE+YoklvlCPh75ugTc7DsojPAAAAAAAAAAAzZllvbjGr7sJP4M7VuFfPMKgGL0mqEA9AACAPwAAgD8zEVQ+MdC6Pj5/LL5ZT7G+dsKnPRX8lr0AAAAAAAAAAHOO7L0Sk6o/sIHVvu6T675PJUa+KpeavgAAAAAAAAAAzYq2vVzjarpW/T4zpYBxrzJAgblD+sCzAACAPwAAgD+t7BI+lVI2Pgrp9L6Ebju+ZRMsvh3pfz0AAAAAAAAAAA09kD7hFjW9uC9zO9XhWrx2aJ2+7lAgvQAAgD8AAIA/cwrDPXUOwj9tjLw+ZPG5vSIlQD0glFw+AAAAAAAAAACt4gg+Jj+YPk3Pdr0hNsm+LWipPYbXML0AAAAAAAAAADP4kz4hiCk/HmSqPeqQG7+qb5s+kgMDvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.007616000000000067,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV6wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHmPMnqmj2MAWyUS9eMAXSUR0CiQgYHX2/SdX2UKGgGR0BvuGwosqaxaAdNBAFoCEdAokJpLmITG3V9lChoBkdAcEOKMNtqH2gHS9VoCEdAokJ38Q7LdXV9lChoBkdAci0BBiTdL2gHS9NoCEdAokJ7DsMRYnV9lChoBkdAbzsXSjQAuWgHS8ZoCEdAokKlhiLEUHV9lChoBkdAcQWjLjghr2gHS8toCEdAokKqeyzHCHV9lChoBkdAcjAtOmBOHmgHS9RoCEdAokLh9w3o93V9lChoBkdAcsKRcu8K5WgHTSsBaAhHQKJDBeAuqWF1fZQoaAZHQHFY20JF9a5oB0vAaAhHQKJDWQuEmIF1fZQoaAZHQHHKsxj8UEhoB0vlaAhHQKJDXUhFEzB1fZQoaAZHQHGe/KISDh9oB0vLaAhHQKJDaabWmP51fZQoaAZHQHHLj+JgsshoB0vAaAhHQKJDoBkqc3F1fZQoaAZHQG8QFMRHww1oB0vHaAhHQKJDwOKfnOl1fZQoaAZHQHBDRaTwDvFoB0vHaAhHQKJEzNbC79R1fZQoaAZHQHHQbhFVktpoB0vLaAhHQKJE/1aGHpN1fZQoaAZHQHKxL9hqj8FoB0vlaAhHQKJFGB6rvLJ1fZQoaAZHQHCfrQHAymBoB0vPaAhHQKJGDOZ9d/t1fZQoaAZHQE/ohTwUg0VoB0vFaAhHQKJGGT8pCrt1fZQoaAZHQFCvpz90ihZoB0uxaAhHQKJGKmoBJZp1fZQoaAZHQHGjRvm5lOJoB0vLaAhHQKJGNVFQVKx1fZQoaAZHQHIfFyWAwwloB0vJaAhHQKJGeu14Pf91fZQoaAZHQHFk4rnTy8VoB0v0aAhHQKJG0w8nuzB1fZQoaAZHQHMLJSNwR5FoB00BAWgIR0CiRwvPszEadX2UKGgGR0BzsTJuEVWTaAdNHQFoCEdAokcqAWi1zHV9lChoBkdAcdYNPgvUSmgHS9ZoCEdAokdkWhysCHV9lChoBkdAcnUNQCSzPmgHS9NoCEdAokdsHWz4UXV9lChoBkdActhO1fE4vWgHS/NoCEdAokfvm7rcCnV9lChoBkdAcHyRUm2LHmgHS/1oCEdAokid7hNucnV9lChoBkdAbmOChew9q2gHS/5oCEdAokjbZpSJj3V9lChoBkdAcQPwLE1l5GgHS85oCEdAolT0uOCGvnV9lChoBkdAT1w5q/M4cWgHS35oCEdAolUmZof0VnV9lChoBkdAcMti7kGRm2gHS+NoCEdAolVqxiXpn3V9lChoBkdAcO5JVbRne2gHS8hoCEdAolWrpaA4GXV9lChoBkdAcClNLDhtL2gHS8xoCEdAolXTq6e5F3V9lChoBkdAbJiDqW1MNGgHS9loCEdAolYJf2K2rnV9lChoBkdAcYQHZbpu/GgHS+VoCEdAolYpbyH2y3V9lChoBkdAce1YZEUj9mgHS+toCEdAolak/lhgE3V9lChoBkdAcfAJWeYlY2gHS8loCEdAolbht+CsfnV9lChoBkdAcRtIYFaB7WgHS9doCEdAolbn1BdD6XV9lChoBkdAciojm0VrRGgHTUUBaAhHQKJW8HRkVet1fZQoaAZHQHFXUulGgBdoB0vRaAhHQKJW/1B+nZV1fZQoaAZHQHH+abSZ0CBoB0vvaAhHQKJXC4d6syV1fZQoaAZHQHFLnWJ79htoB0vlaAhHQKJXw+X7cfx1fZQoaAZHQHMvhkEs8PpoB0vHaAhHQKJX5BCUorp1fZQoaAZHQHF973sXzlNoB0vZaAhHQKJYCoybhFV1fZQoaAZHQHCDMx9G7SRoB0vAaAhHQKJYSqNp/PR1fZQoaAZHQHNjT3IuGsVoB0vaaAhHQKJY0/qxC6Z1fZQoaAZHQHAPCih37k5oB0vQaAhHQKJY6cy31Bd1fZQoaAZHQHCTqePJaJRoB0vBaAhHQKJZNLRrrPd1fZQoaAZHQHGmjm8ujAVoB0vZaAhHQKJZRGZNO/N1fZQoaAZHQHKfBCdBjWloB0vWaAhHQKJZWdpZfUp1fZQoaAZHQHJse23KB/ZoB0vXaAhHQKJZmkgOjIt1fZQoaAZHQHIfV2mpEQZoB0vGaAhHQKJZ45J9RaZ1fZQoaAZHQHLOgjdHlOpoB0u+aAhHQKJZ6TVUdaN1fZQoaAZHQHH2gdKdxyZoB0vqaAhHQKJafl5nlGR1fZQoaAZHQHKRuGTLW7RoB0v1aAhHQKJapoIv8Il1fZQoaAZHQHFewIyCWeJoB00OAWgIR0CiWt5R8+ibdX2UKGgGR0BxVJE3Kji5aAdL0mgIR0CiWxulO45MdX2UKGgGR0Bx1OD/VAiWaAdL8WgIR0CiW3wokRjCdX2UKGgGR0Bw/IuIyj59aAdLumgIR0CiW7LT6SDAdX2UKGgGR0BP9sIVuaWpaAdLhGgIR0CiW7LWRRuTdX2UKGgGR0BvVayD7IkraAdLx2gIR0CiW/8UuctodX2UKGgGR0By577gsK9gaAdL8mgIR0CiW/93bEgodX2UKGgGR0Bx3ljNIK+jaAdNAwFoCEdAolwIn2Iwd3V9lChoBkdAc0G3lS0jT2gHTVsBaAhHQKJcWMglnh91fZQoaAZHQHEUEdJaq0doB0vmaAhHQKJcttbcGkh1fZQoaAZHQHI6ixVyWAxoB0voaAhHQKJc4uDjBEd1fZQoaAZHQHHsl58jRlZoB00AAWgIR0CiXSdoN/e+dX2UKGgGR0BuG+c2BJ7LaAdL1WgIR0CiXTHcL0BfdX2UKGgGR0BRFkmY0EX+aAdLqmgIR0CiXT7K7qY7dX2UKGgGR0BPS8ejmCAdaAdLoGgIR0CiXXecH4XXdX2UKGgGR0Bv3iVhTfixaAdL8WgIR0CiXYcriEQHdX2UKGgGR0BzM6pBHCoCaAdL22gIR0CiXb/k/8l5dX2UKGgGR0Bypt+KCQLeaAdL0mgIR0CiXsZwfhdddX2UKGgGR0Bw/W/wiJO4aAdNBgFoCEdAol7MuzyBkXV9lChoBkdAcRMYSxqwhWgHS8RoCEdAol7dcQiA2HV9lChoBkdAcVo/J/5Ly2gHS85oCEdAol8RmRNh3XV9lChoBkdAbnPAQg9vCWgHS+hoCEdAol8oq5LAYnV9lChoBkdAcPhKcurZJ2gHS7toCEdAol+WmrKeTXV9lChoBkdAcyQXPqs2emgHTRgBaAhHQKJfyRp1zQx1fZQoaAZHQHD/NDD0lJJoB0vhaAhHQKJfza7EpAl1fZQoaAZHQHG50Gu9vjxoB0vtaAhHQKJguIF/x2B1fZQoaAZHQHHG4q0+kgxoB0vEaAhHQKJg2rilzlt1fZQoaAZHQHHqHtOVPepoB0v5aAhHQKJhaMH8jzJ1fZQoaAZHQHFA2L9/BnBoB0v3aAhHQKJhjgQ6IWR1fZQoaAZHQHFp8cIZ62RoB0vlaAhHQKJhjrCWNWF1fZQoaAZHQHGZvk/8l5ZoB0vbaAhHQKJh2HM2WIJ1fZQoaAZHQHDIxu4wyqNoB0vWaAhHQKJjU3w1BMV1fZQoaAZHQHIW5qIrOJNoB0vdaAhHQKJjoC+10DF1fZQoaAZHQFQ5uUUwi7loB0vFaAhHQKJkDgtvn8t1fZQoaAZHQHGVeTV2A5JoB0v3aAhHQKJkNVMmF8J1fZQoaAZHQHF6JR8+ialoB0v0aAhHQKJksQIUrTZ1fZQoaAZHQHImyGnGbTdoB0v7aAhHQKJkvwTdtVJ1fZQoaAZHQHGJWRq46OpoB0vuaAhHQKJlYhbGFSN1fZQoaAZHQHM4mfChvitoB0v1aAhHQKJllIYm9g51fZQoaAZHQFD5/oaDPGBoB0ufaAhHQKJl1VvuPWB1fZQoaAZHQHHXd4RmK65oB0v1aAhHQKJmzuKoAGV1fZQoaAZHQHEayJoCdSVoB0vwaAhHQKJm3G8274B1fZQoaAZHQHFapPM0P6NoB0vmaAhHQKJnKpMHryF1fZQoaAZHQHHh3QQcxTNoB0vpaAhHQKJnWVbiZOV1ZS4="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 492,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
"dtype": "float32",
|
59 |
"bounded_below": "[ True True True True True True True True]",
|
60 |
"bounded_above": "[ True True True True True True True True]",
|
|
|
65 |
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
76 |
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
},
|
79 |
+
"n_envs": 16,
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:574e819e17e9ac68e8a0ad8fa6c9f88b1987d5f96f4d59bce08bd575af805343
|
3 |
+
size 87978
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1af2956f0143ed41f4fbea1e96f9a12495838bec776cc410f125fcbaf80b6ccc
|
3 |
+
size 43634
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.3.0+cu121
|
5 |
-
- GPU Enabled:
|
6 |
- Numpy: 1.25.2
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
|
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.3.0+cu121
|
5 |
+
- GPU Enabled: False
|
6 |
- Numpy: 1.25.2
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 276.02775231280026, "std_reward": 24.34037990257214, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-05-29T11:35:33.659737"}
|