File size: 19,010 Bytes
48f239a
 
 
 
 
 
 
 
 
 
901be79
 
48f239a
 
 
 
 
 
 
 
 
901be79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48f239a
 
 
 
 
 
 
 
017d6bf
 
48f239a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
017d6bf
48f239a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c671c51
48f239a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
017d6bf
c671c51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48f239a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
901be79
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
---
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
license: llama3.1
library_name: transformers
tags:
- llama-3.1
- conversational
- instruction following
- reasoning
- function calling
- mergekit
- finetuning
- axolotl
pipeline_tag: text-generation
model-index:
- name: Llama-3.1-Storm-8B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 80.51
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=akjindal53244/Llama-3.1-Storm-8B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 31.49
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=akjindal53244/Llama-3.1-Storm-8B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 16.62
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=akjindal53244/Llama-3.1-Storm-8B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 10.18
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=akjindal53244/Llama-3.1-Storm-8B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 9.12
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=akjindal53244/Llama-3.1-Storm-8B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 31.15
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=akjindal53244/Llama-3.1-Storm-8B
      name: Open LLM Leaderboard
---

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64c75c1237333ccfef30a602/tmOlbERGKP7JSODa6T06J.jpeg)

Authors: [Ashvini Kumar Jindal](https://www.linkedin.com/in/ashvini-jindal-26653262/), [Pawan Kumar Rajpoot](https://www.linkedin.com/in/pawanrajpoot/), [Ankur Parikh](https://www.linkedin.com/in/ankurnlpexpert/), [Akshita Sukhlecha](https://www.linkedin.com/in/akshita-sukhlecha/)

**πŸ€— Hugging Face Announcement Blog**: https://huggingface.co/blog/akjindal53244/llama31-storm8b

**πŸš€Ollama:** `ollama run ajindal/llama3.1-storm:8b`


## TL;DR

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c75c1237333ccfef30a602/mDtDeiHwnBupw1k_n99Lf.png)

We present the [**Llama-3.1-Storm-8B**](https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B) model that outperforms Meta AI's [Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) and [Hermes-3-Llama-3.1-8B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-8B) models significantly across diverse benchmarks as shown in the performance comparison plot in the next section. Our approach consists of three key steps:
1. **Self-Curation**: We applied two self-curation methods to select approximately 1 million high-quality examples from a pool of ~2.8 million open-source examples. **Our curation criteria focused on educational value and difficulty level, using the same SLM for annotation instead of larger models (e.g. 70B, 405B).**
2. **Targeted fine-tuning**: We performed [Spectrum](https://arxiv.org/abs/2406.06623)-based targeted fine-tuning over the Llama-3.1-8B-Instruct model. The Spectrum method accelerates training by selectively targeting layer modules based on their signal-to-noise ratio (SNR), and freezing the remaining modules. In our work, 50% of layers are frozen.
3. **Model Merging**: We merged our fine-tuned model with the [Llama-Spark](https://huggingface.co/arcee-ai/Llama-Spark) model using [SLERP](https://huggingface.co/blog/mlabonne/merge-models#1-slerp) method. The merging method produces a blended model with characteristics smoothly interpolated from both parent models, ensuring the resultant model captures the essence of both its parents. [Llama-3.1-Storm-8B](https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B) improves Llama-3.1-8B-Instruct across 10 diverse benchmarks. These benchmarks cover areas such as instruction-following, knowledge-driven QA, reasoning, truthful answer generation, and function calling.

## πŸ† Introducing Llama-3.1-Storm-8B
[**Llama-3.1-Storm-8B**](https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B) builds upon the foundation of Llama-3.1-8B-Instruct, aiming to enhance both conversational and function calling capabilities within the 8B parameter model class.

As shown in the left subplot of the above figure, [**Llama-3.1-Storm-8B**](https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B) model improves Meta-Llama-3.1-8B-Instruct across various benchmarks - Instruction-following ([IFEval](https://arxiv.org/abs/2311.07911)), Knowledge-driven QA benchmarks ([GPQA](https://arxiv.org/abs/2311.12022), [MMLU-Pro](https://arxiv.org/pdf/2406.01574)), Reasoning ([ARC-C](https://arxiv.org/abs/1803.05457), [MuSR](https://arxiv.org/abs/2310.16049), [BBH](https://arxiv.org/pdf/2210.09261)), Reduced Hallucinations ([TruthfulQA](https://arxiv.org/abs/2109.07958)), and Function-Calling ([BFCL](https://huggingface.co/datasets/gorilla-llm/Berkeley-Function-Calling-Leaderboard)). This improvement is particularly significant for AI developers and enthusiasts who work with limited computational resources.

We also benchmarked our model with the recently published model [Hermes-3-Llama-3.1-8B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-8B) built on top of the Llama-3.1-8B-Instruct model. As shown in the right subplot of the above figure, **Llama-3.1-Storm-8B outperforms Hermes-3-Llama-3.1-8B on 7 out of 9 benchmarks**, with Hermes-3-Llama-3.1-8B surpassing Llama-3.1-Storm-8B on the MuSR benchmark and both models showing comparable performance on the BBH benchmark.


## Llama-3.1-Storm-8B Model Strengths
Llama-3.1-Storm-8B is a powerful generalist model useful for diverse applications. We invite the AI community to explore [Llama-3.1-Storm-8B](https://huggingface.co/collections/akjindal53244/storm-66ba6c96b7e24ecb592787a9) and look forward to seeing how it will be utilized in various projects and applications.

<table>
  <tr>
   <td><strong>Model Strength</strong>
   </td>
   <td><strong>Relevant Benchmarks</strong>
   </td>
  <tr>
  <tr>
   <td>🎯 Improved Instruction Following
   </td>
   <td>IFEval Strict (+3.93%)
   </td>
  <tr>
  <tr>
   <td>🌐 Enhanced Knowledge Driven Question Answering
   </td>
   <td>GPQA (+7.21%), MMLU-Pro (+0.55%), AGIEval (+3.77%)
   </td>
  <tr>
  <tr>
   <td>🧠 Better Reasoning
   </td>
   <td>ARC-C (+3.92%), MuSR (+2.77%), BBH (+1.67%), AGIEval (+3.77%)
   </td>
  <tr>
  <tr>
   <td>πŸ€– Superior Agentic Capabilities
   </td>
   <td>BFCL: Overall Acc (+7.92%), BFCL: AST Summary (+12.32%)
   </td>
  <tr>
  <tr>
   <td>🚫 Reduced Hallucinations
   </td>
   <td>TruthfulQA (+9%)
   </td>
  <tr>
</table>

**Note**: All improvements are absolute gains over Meta-Llama-3.1-8B-Instruct.


## Llama-3.1-Storm-8B Models
1. `BF16`: [Llama-3.1-Storm-8B](https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B)
2. ⚑ `FP8`: [Llama-3.1-Storm-8B-FP8-Dynamic](https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B-FP8-Dynamic)
3. ⚑ `GGUF`: [Llama-3.1-Storm-8B-GGUF](https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B-GGUF)
4. πŸš€ Ollama: `ollama run ajindal/llama3.1-storm:8b`


## πŸ’» How to Use the Model
The Hugging Face `transformers` library loads the model in `bfloat16` by default. This is the type used by the [Llama-3.1-Storm-8B](https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B) checkpoint, so it’s the recommended way to run to ensure the best results.

### Installation
```bash
pip install --upgrade "transformers>=4.43.2" torch==2.3.1 accelerate vllm==0.5.3.post1
```

Developers can easily integrate Llama-3.1-Storm-8B into their projects using popular libraries like Transformers and vLLM. The following sections illustrate the usage with simple hands-on examples:

### Conversational Use-case
#### Use with [πŸ€— Transformers](https://github.com/huggingface/transformers)
##### Using `transformers.pipeline()` API
```python
import transformers
import torch

model_id = "akjindal53244/Llama-3.1-Storm-8B"
pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "What is 2+2?"}
]

outputs = pipeline(messages, max_new_tokens=128, do_sample=True, temperature=0.01, top_k=100, top_p=0.95)
print(outputs[0]["generated_text"][-1])  # Expected Output: {'role': 'assistant', 'content': '2 + 2 = 4'}
```

##### Using `model.generate()` API
```bash
pip install flash_attn==2.6.3
```

```python
import torch
from transformers import AutoTokenizer, LlamaForCausalLM

# Apply Llama3.1 chat-template
def format_prompt(user_query):
    template = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"""
    return template.format(user_query)


model_id = 'akjindal53244/Llama-3.1-Storm-8B'
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = LlamaForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    load_in_8bit=False,
    load_in_4bit=False,
    use_flash_attention_2=True
)

# Build final input prompt after applying chat-template
prompt = format_prompt("What is 2+2?")

input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
generated_ids = model.generate(input_ids, max_new_tokens=128, temperature=0.01, do_sample=True, eos_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True)
print(response)  # Expected Output: '2 + 2 = 4'
```

#### Use with [vLLM](https://github.com/vllm-project/vllm)
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model_id = "akjindal53244/Llama-3.1-Storm-8B"  # FP8 model: "akjindal53244/Llama-3.1-Storm-8B-FP8-Dynamic"
num_gpus = 1

tokenizer = AutoTokenizer.from_pretrained(model_id)
llm = LLM(model=model_id, tensor_parallel_size=num_gpus)
sampling_params = SamplingParams(max_tokens=128, temperature=0.01, top_k=100, top_p=0.95)

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "What is 2+2?"}
]
prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize = False)
print(llm.generate([prompt], sampling_params)[0].outputs[0].text.strip())  # Expected Output: 2 + 2 = 4
```

#### Use with [LitGPT](https://github.com/Lightning-AI/litgpt)
```bash
pip install 'litgpt[all]'
litgpt download akjindal53244/Llama-3.1-Storm-8B --model_name meta-llama/Meta-Llama-3.1-8B
```

```python
from litgpt import LLM

llm = LLM.load(model="akjindal53244/Llama-3.1-Storm-8B")
llm.generate("What do Llamas eat?")
```

### Function Calling Use-case

[**Llama-3.1-Storm-8B**](https://huggingface.co/collections/akjindal53244/storm-66ba6c96b7e24ecb592787a9) has impressive function calling capabilities compared to Meta-Llama-3.1-8B-Instruct as demonstrated by the BFCL benchmark.

#### Prompt Format for Function Calling
Llama-3.1-Storm-8B is trained with specific system prompt for Function Calling:
```
You are a function calling AI model. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into function. The user may use the terms function calling or tool use interchangeably.

Here are the available functions:
<tools>LIST_OF_TOOLS</tools>

For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags in the format:
<tool_call>{"tool_name": <function-name>, "tool_arguments": <args-dict>}</tool_call>
```
Above system prompt should be used with passing `LIST_OF_TOOLS` as input.


#### Use with [vLLM](https://github.com/vllm-project/vllm)
```python
import json
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model_id = "akjindal53244/Llama-3.1-Storm-8B"  # FP8 model: "akjindal53244/Llama-3.1-Storm-8B-FP8-Dynamic"
num_gpus = 1

tokenizer = AutoTokenizer.from_pretrained(model_id)
llm = LLM(model=model_id, tensor_parallel_size=num_gpus)
sampling_params = SamplingParams(max_tokens=128, temperature=0.01, top_k=100, top_p=0.95)


def create_system_prompt(tools_list):
    system_prompt_format = """You are a function calling AI model. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into function. The user may use the terms function calling or tool use interchangeably.

Here are the available functions:
<tools>{}</tools>

For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags in the format:
<tool_call>{"tool_name": <function-name>, "tool_arguments": <args-dict>}</tool_call>"""
    
    # Convert the tools list to a string representation
    tools_str = json.dumps(tools_list, ensure_ascii=False)
    # Format the system prompt with the tools list
    system_prompt = system_prompt_format.format(tools_str)
    return system_prompt


# Example tools list
tools_list = [
    {
        "name": "peers",
        "description": "Retrieves a list of company peers given a stock symbol.",
        "parameters": {
            "symbol": {
                "description": "The stock symbol for the company.",
                "type": "str",
                "default": ""
            }
        }
    },
    {
        "name": "web_chain_details",
        "description": "python",
        "parameters": {
            "chain_slug": {
                "description": "The slug identifier for the blockchain (e.g., 'ethereum' for Ethereum mainnet).",
                "type": "str",
                "default": "ethereum"
            }
        }
    }
]

# Create the system prompt with the tools list
system_prompt = create_system_prompt(tools_list)

messages = [
    {"role": "system", "content": system_prompt},
    {"role": "user", "content": "I need to understand the details of the Ethereum blockchain for my cryptocurrency project. Can you fetch the details for 'ethereum'?"}
]

prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize = False)
print(llm.generate([prompt], sampling_params)[0].outputs[0].text.strip())  # Expected Output: <tool_call>{'tool_name': 'web_chain_details', 'tool_arguments': {'chain_slug': 'ethereum'}}</tool_call>
```

#### Use with [Ollama](https://ollama.com/)
```
import ollama

tools = [{
      'type': 'function',
      'function': {
        'name': 'get_current_weather',
        'description': 'Get the current weather for a city',
        'parameters': {
          'type': 'object',
          'properties': {
            'city': {
              'type': 'string',
              'description': 'The name of the city',
            },
          },
          'required': ['city'],
        },
      },
    },
    {
      'type': 'function',
      'function': {
        'name': 'get_places_to_vist',
        'description': 'Get places to visit in a city',
        'parameters': {
          'type': 'object',
          'properties': {
            'city': {
              'type': 'string',
              'description': 'The name of the city',
            },
          },
          'required': ['city'],
        },
      },
    },
  ]

response = ollama.chat(
    model='ajindal/llama3.1-storm:8b',
    messages=[
        {'role': 'system', 'content': 'Do not answer to nay vulgar questions.'},
        {'role': 'user', 'content': 'What is the weather in Toronto and San Francisco?'}
        ],
    tools=tools
)

print(response['message'])  # Expected Response: {'role': 'assistant', 'content': "<tool_call>{'tool_name': 'get_current_weather', 'tool_arguments': {'city': 'Toronto'}}</tool_call>"}
```


## Alignment Note
While **Llama-3.1-Storm-8B** did not undergo an explicit model alignment process, it may still retain some alignment properties inherited from the Meta-Llama-3.1-8B-Instruct model.

## Cite Our Work
```
@misc {ashvini_kumar_jindal_2024,
    author       = { {Ashvini Kumar Jindal, Pawan Kumar Rajpoot, Ankur Parikh, Akshita Sukhlecha} },
    title        = { Llama-3.1-Storm-8B },
    year         = 2024,
    url          = { https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B },
    doi          = { 10.57967/hf/2902 },
    publisher    = { Hugging Face }
}
```

## Support Our Work
With 3 team-members spanned across 3 different time-zones, we have won [NeurIPS LLM Efficiency Challenge 2023](https://llm-efficiency-challenge.github.io/) and 4 other competitions in Finance and Arabic LLM space. We have also published [SOTA mathematical reasoning model](https://huggingface.co/akjindal53244/Arithmo-Mistral-7B).

**Llama-3.1-Storm-8B** is our most valuable contribution so far towards the open-source community. We are committed in developing efficient generalist LLMs. **We're seeking both computational resources and innovative collaborators to drive this initiative forward.**
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/akjindal53244__Llama-3.1-Storm-8B-details)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |29.84|
|IFEval (0-Shot)    |80.51|
|BBH (3-Shot)       |31.49|
|MATH Lvl 5 (4-Shot)|16.62|
|GPQA (0-shot)      |10.18|
|MuSR (0-shot)      | 9.12|
|MMLU-PRO (5-shot)  |31.15|