File size: 6,348 Bytes
ea9a553 f5a9680 cdda63e f5a9680 a0e3671 cdda63e ea9a553 f5a9680 142dfa6 f5a9680 76aab3d f5a9680 7316729 f5a9680 7316729 f5a9680 7316729 f5a9680 cdda63e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
---
language:
- en
license: apache-2.0
tags:
- story
- young children
- educational
- knowledge
base_model: mistralai/Mistral-7B-v0.1
datasets:
- ajibawa-2023/Children-Stories-Collection
model-index:
- name: Young-Children-Storyteller-Mistral-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 68.69
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Young-Children-Storyteller-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 84.67
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Young-Children-Storyteller-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.11
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Young-Children-Storyteller-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 62.62
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Young-Children-Storyteller-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.22
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Young-Children-Storyteller-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.2
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Young-Children-Storyteller-Mistral-7B
name: Open LLM Leaderboard
---
**Young-Children-Storyteller-Mistral-7B**
This model is based on my dataset [Children-Stories-Collection](https://huggingface.co/datasets/ajibawa-2023/Children-Stories-Collection) which has over 0.9 million stories meant for Young Children (age 6 to 12).
Drawing upon synthetic datasets meticulously designed with the developmental needs of young children in mind, Young-Children-Storyteller is more than just a tool—it's a companion on the journey of discovery and learning.
With its boundless storytelling capabilities, this model serves as a gateway to a universe brimming with wonder, adventure, and endless possibilities.
Whether it's embarking on a whimsical adventure with colorful characters, unraveling mysteries in far-off lands, or simply sharing moments of joy and laughter, Young-Children-Storyteller fosters a love for language and storytelling from the earliest of ages.
Through interactive engagement and age-appropriate content, it nurtures creativity, empathy, and critical thinking skills, laying a foundation for lifelong learning and exploration.
Rooted in a vast repository of over 0.9 million specially curated stories tailored for young minds, Young-Children-Storyteller is poised to revolutionize the way children engage with language and storytelling.
Kindly note this is qLoRA version, another exception.
**GGUF & Exllama**
Standard Q_K & GGUF: [Link](https://huggingface.co/MarsupialAI/Young-Children-Storyteller-Mistral-7B_iMatrix_GGUF/tree/main)
Exllama: TBA
Special Thanks to [MarsupialAI](https://huggingface.co/MarsupialAI) for quantizing the model.
**Training**
Entire dataset was trained on 4 x A100 80GB. For 3 epoch, training took more than 30 Hours. Axolotl codebase was used for training purpose. Entire data is trained on Mistral-7B-v0.1.
**Example Prompt:**
This model uses **ChatML** prompt format.
```
<|im_start|>system
You are a Helpful Assistant who can write educational stories for Young Children.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
You can modify above Prompt as per your requirement.
I want to say special Thanks to the Open Source community for helping & guiding me to better understand the AI/Model development.
Thank you for your love & support.
**Example Output**
Example 1
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/J48WYa1qmKnRaILA_44Ao.jpeg)
Example 2
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/H2FucX0CTtV25wlgHmifN.jpeg)
Example 3
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/o7hiMI5noO8fPedUG75H8.jpeg)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ajibawa-2023__Young-Children-Storyteller-Mistral-7B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |71.08|
|AI2 Reasoning Challenge (25-Shot)|68.69|
|HellaSwag (10-Shot) |84.67|
|MMLU (5-Shot) |64.11|
|TruthfulQA (0-shot) |62.62|
|Winogrande (5-shot) |81.22|
|GSM8k (5-shot) |65.20|
|