File size: 7,611 Bytes
d1658dc
 
 
37cc14d
 
 
 
a6de8e1
37cc14d
e51fdb8
 
 
 
6baa598
94da8c7
 
 
 
 
 
cbea44c
03e5d6f
cbea44c
de7c818
a6de8e1
cbea44c
e51fdb8
 
 
 
d7ded9e
 
 
ea50aa7
 
cbea44c
6baa598
 
 
f8da1ef
ce36fb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e73023
 
ce36fb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dea9fa8
ce36fb9
 
 
 
 
 
 
 
 
 
 
 
 
 
fcc5976
ce36fb9
 
 
 
 
 
6fc8c96
 
c8a5f4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8d2f44
 
 
 
 
c8a5f4c
 
 
 
 
 
 
 
 
 
 
 
6fc8c96
1133204
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
---
license: apache-2.0
---
# Overview:

Honyaku-7b-v2 is an improved version of its predecessor. This model exhibits enhanced accuracy in adhering to multilingual generation tags compared to the previous version.  

# Key Features & Limitation:

* Improved Multilingual Generation Accuracy: The model has increased precision in following multilingual generation tags.  
* Quality-Reflective Translation: The translation quality of Honyaku-7b is strongly influenced by the pre-training of the base model. Consequently, the quality of translation varies in proportion to the training volume of the original language model.  
* The primary purpose is to translate several hundreds to several thousand tokens. Due to the characteristics of the Base model, translation into Japanese is the most stable.   
* It has been fine-tuned up to 8k tokens, but based on the Base model's characteristics, it supports up to 4k tokens including the prompt.

**Cautions:**

In minor languages, translation does not function well.  
The translation function of 7b-level large language models (LLM) often contains errors.  
Do not use unchecked text for social communication.

# 概要:
Honyaku-7b-v2は、前バージョンの改良版です。このモデルは、多言語生成タグへの追従精度が前バージョンと比較して向上しています。  


# 主な特徴と制限事項:

* 多言語生成の精度向上: モデルは、多言語生成タグに対する追従の精度が向上しました。  
* 翻訳品質の反映: Honyaku-7bの翻訳品質は、ベースモデルの事前学習に強く影響されます。翻訳品質は、元の言語モデルの学習量に比例して変わります。  
* 数100~数1000 tokenの翻訳を主目的としています。Base modelの特徴から、日本語への翻訳が最も安定しています。
* 8k tokenまでファインチューニングしていますが、Base modelの特徴からprompt含めて4k tokenにまで対応とします。  

**注意点:**

* マイナーな言語においては、翻訳がうまく機能しません。
* 7bレベルの大規模言語モデル(LLM)の翻訳機能には誤りが多くみられます。未チェックの文章は、正式なコミュニケーションには使用しないでください。

# Honyaku-7b-webui  


```
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
from threading import Thread

# 言語リスト
languages = [
    "English", "Chinese (Simplified)", "Chinese (Traditional)", "Spanish", "Arabic", "Hindi",
    "Bengali", "Portuguese", "Russian", "Japanese", "German", "French", "Urdu", "Indonesian",
    "Italian", "Turkish", "Korean", "Vietnamese", "Tamil", "Marathi", "Telugu", "Persian",
    "Polish", "Dutch", "Thai", "Gujarati", "Romanian", "Ukrainian", "Malay", "Kannada", "Oriya (Odia)",
    "Burmese (Myanmar)", "Azerbaijani", "Uzbek", "Kurdish (Kurmanji)", "Swedish", "Filipino (Tagalog)",
    "Serbian", "Czech", "Hungarian", "Greek", "Belarusian", "Bulgarian", "Hebrew", "Finnish",
    "Slovak", "Norwegian", "Danish", "Sinhala", "Croatian", "Lithuanian", "Slovenian", "Latvian",
    "Estonian", "Armenian", "Malayalam", "Georgian", "Mongolian", "Afrikaans", "Nepali", "Pashto",
    "Punjabi", "Kurdish", "Kyrgyz", "Somali", "Albanian", "Icelandic", "Basque", "Luxembourgish",
    "Macedonian", "Maltese", "Hawaiian", "Yoruba", "Maori", "Zulu", "Welsh", "Swahili", "Haitian Creole",
    "Lao", "Amharic", "Khmer", "Javanese", "Kazakh", "Malagasy", "Sindhi", "Sundanese", "Tajik", "Xhosa",
    "Yiddish", "Bosnian", "Cebuano", "Chichewa", "Corsican", "Esperanto", "Frisian", "Galician", "Hausa",
    "Hmong", "Igbo", "Irish", "Kinyarwanda", "Latin", "Samoan", "Scots Gaelic", "Sesotho", "Shona",
    "Sotho", "Swedish", "Uyghur"
]

tokenizer = AutoTokenizer.from_pretrained("aixsatoshi/Honyaku-7b-v2")
model = AutoModelForCausalLM.from_pretrained("aixsatoshi/Honyaku-7b-v2", torch_dtype=torch.float16)
model = model.to('cuda:0')

class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        stop_ids = [2]
        for stop_id in stop_ids:
            if input_ids[0][-1] == stop_id:
                return True
        return False

def predict(message, history, tokens, temperature, language):
    tag = "<" + language.lower() + ">"
    history_transformer_format = history + [[message, ""]]
    stop = StopOnTokens()

    messages = "".join(["".join(["\n<english>:"+item[0]+"</english>\n", tag+item[1]])
                for item in history_transformer_format])

    model_inputs = tokenizer([messages], return_tensors="pt").to("cuda")
    streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        model_inputs,
        streamer=streamer,
        max_new_tokens=int(tokens),
        temperature=float(temperature),
        num_beams=1,
        stopping_criteria=StoppingCriteriaList([stop])
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    partial_message = ""
    for new_token in streamer:
        if new_token != '<':
            partial_message += new_token
            yield partial_message

# Gradioインタフェースの設定
demo = gr.ChatInterface(
    fn=predict, 
    title="Honyaku-7b webui",
    description="Translate using Honyaku-7b model",
    additional_inputs=[
        gr.Slider(100, 4096, value=1000, label="Tokens"),
        gr.Slider(0.0, 1.0, value=0.3, label="Temperature"),
        gr.Dropdown(choices=languages, value="Japanese", label="Language")
    ]
)

demo.queue().launch()
```

### Textstreamer
```
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer

model_name = "aixsatoshi/Honyaku-7b-v2"
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Define the streamer
streamer = TextStreamer(tokenizer)

# Define the English prompt
english_prompt = """
Machine translation accuracy varies greatly across languages. Key challenges include context understanding, idiomatic expressions, and syntactic differences. Advanced models leverage AI to enhance translation quality, focusing on nuances and cultural relevance.

To address these challenges, developers employ neural networks and deep learning techniques, which adapt to linguistic variations and learn from vast amounts of text. This approach helps in capturing the essence of languages and accurately translating complex sentences.

Furthermore, user feedback plays a crucial role in refining translation algorithms. By analyzing corrections and suggestions, machine translation systems can evolve and handle nuanced expressions more effectively. This iterative process ensures continuous improvement, making translations more reliable and understandable for a global audience.
"""

# Prepare the prompt for English to Japanese translation
prompt = f"<english>: {english_prompt} </english>\n\n<japanese>:"

# Tokenize the input text and move to CUDA device
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")

# Generate the output using the model and streamer
output = model.generate(**inputs, max_new_tokens=4096, do_sample=True, top_k=20, top_p=0.95, streamer=streamer)
```

# Base Model  
[tokyotech-llm/Swallow-MS-7b-v0.1](https://huggingface.co/tokyotech-llm/Swallow-MS-7b-v0.1)