File size: 3,975 Bytes
db792f0 7aaed1e bd15cf5 7aaed1e bd15cf5 7aaed1e bfd3814 bd15cf5 7aaed1e 62f1dde 7aaed1e 6c9ccc1 7aaed1e b426412 7aaed1e b426412 7aaed1e b426412 7aaed1e b426412 7aaed1e b426412 7aaed1e b426412 7aaed1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
---
license: mit
---
# SEA-LION
SEA-LION is a collection of LLMs which has been pretrained and instruct-tuned for the Southeast Asia (SEA) region.
The models range from 3 billion to 7 billion parameters.
This is the card for the SEA-LION 7B model.
SEA-LION stands for <i>Southeast Asia Languages In One Network</i>.
## Model Details
### Model Description
The SEA-LION model is a significant leap forward in the field of natural language processing,
specifically trained to understand Southeast Asia (SEA) regional context.
SEA-LION is built on the robust MPT architecture and utilize a vocabulary size of 256K.
The model employs our custom SEABPETokenizer for tokenization.
Our SEABPETokenizer is specially tailored for SEA languages, ensuring optimal model performance.
The training data for SEA-LION encompasses 980B tokens.
- **Developed by:** Products Pillar, AI Singapore
- **Funded by:** Singapore NRF
- **Model type:** Decoder
- **Languages:** English, Chinese, Indonesian, Malay, Thai, Vietnamese, Filipino, Tamil, Burmese, Khmer, Lao
- **License:** MIT License
## Training Details
### Data
SEA-LION was trained on 980B tokens of the following data:
| Data Source | Tokens | Percentage |
|---------------------------|-------:|:----------:|
| RefinedWeb - English | 571.3B | 58.20% |
| mC4 - Chinese | 91.2B | 9.29% |
| mC4 - Indonesian | 14.7B | 1.50% |
| mC4 - Malay | 2.9B | 0.29% |
| mC4 - Filipino | 5.3B | 0.54% |
| mC4 - Burmese | 1.2B | 0.49% |
| mC4 - Vietnamese | 63.4B | 6.46% |
| mC4 - Thai | 21.6B | 2.20% |
| mC4 - Lao | 1.1B | 0.12% |
| mC4 - Khmer | 3.9B | 0.40% |
| mC4 - Tamil | 10.2B | 1.04% |
| the Stack - Python | 41.8B | 4.26% |
| the Stack - Javascript | 55.6B | 5.66% |
| the Stack - Shell | 2.5B | 0.26% |
| the Stack - SQL | 12.8B | 1.31% |
| the Stack - Markdown | 26.6B | 2.71% |
| RedPajama - StackExchange | 21.2B | 2.16% |
| RedPajama - ArXiv | 30.6B | 3.12% |
### Infrastructure
SEA-LION was trained using [MosaicML Composer](https://github.com/mosaicml/composer)
on the following hardware:
| Training Details | SEA-LION 7B |
|----------------------|:------------:|
| AWS EC2 p4d.24xlarge | 32 instances |
| Nvidia A100 40GB GPU | 256 |
| Training Duration | 22 days |
### Configuration
| HyperParameter | SEA-LION 7B |
|-------------------|:------------------:|
| Precision | bfloat16 |
| Optimizer | decoupled_adamw |
| Scheduler | cosine_with_warmup |
| Learning Rate | 6.0e-5 |
| Global Batch Size | 2048 |
| Micro Batch Size | 4 |
## Technical Specifications
### Model Architecture and Objective
SEA-LION is a decoder model using the MPT architecture.
| Parameter | SEA-LION 7B |
|-----------------|:-----------:|
| Layers | 32 |
| d_model | 4096 |
| head_dim | 32 |
| Vocabulary | 256000 |
| Sequence Length | 2048 |
### Tokenizer Details
We sample 20M lines from the training data to train the tokenizer.<br>
The framework for training is [SentencePiece](https://github.com/google/sentencepiece).<br>
The tokenizer type is Byte-Pair Encoding (BPE).
## The Team
Lam Zhiwen Clarence<br>
Leong Weiqi<br>
Li Yier<br>
Liu Darius<br>
Lovenia Holy<br>
Montalan Jann Railey<br>
Ng Raymond<br>
Ngui Jian Gang<br>
Nguyen Ngan Thanh<br>
Ong Tat-Wee David<br>
Rengarajan Hamsawardhini<br>
Susanto Yosephine<br>
Tai Ngee Chia<br>
Tan Choon Meng<br>
Teo Jin Howe<br>
Teo Leslie<br>
Teo Wei Yi<br>
Tjhi William<br>
Yeo Yeow Tong<br>
Yong Xianbin<br>
## Contact
For more info, please contact us at seallm@aisingapore.org
|