File size: 3,975 Bytes
db792f0
 
 
7aaed1e
 
bd15cf5
7aaed1e
 
 
bd15cf5
7aaed1e
 
 
 
 
 
bfd3814
bd15cf5
7aaed1e
 
 
62f1dde
7aaed1e
 
 
 
 
 
 
6c9ccc1
7aaed1e
 
 
 
 
 
 
 
 
 
 
b426412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7aaed1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b426412
7aaed1e
 
b426412
7aaed1e
b426412
 
7aaed1e
 
 
b426412
7aaed1e
b426412
7aaed1e
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---
license: mit
---
# SEA-LION

SEA-LION is a collection of LLMs which has been pretrained and instruct-tuned for the Southeast Asia (SEA) region.
The models range from 3 billion to 7 billion parameters.
This is the card for the SEA-LION 7B model.

SEA-LION stands for <i>Southeast Asia Languages In One Network</i>.


## Model Details

### Model Description

The SEA-LION model is a significant leap forward in the field of natural language processing,
specifically trained to understand Southeast Asia (SEA) regional context.

SEA-LION is built on the robust MPT architecture and utilize a vocabulary size of 256K.

The model employs our custom SEABPETokenizer for tokenization.
Our SEABPETokenizer is specially tailored for SEA languages, ensuring optimal model performance.

The training data for SEA-LION encompasses 980B tokens.

- **Developed by:** Products Pillar, AI Singapore
- **Funded by:** Singapore NRF
- **Model type:** Decoder
- **Languages:** English, Chinese, Indonesian, Malay, Thai, Vietnamese, Filipino, Tamil, Burmese, Khmer, Lao
- **License:** MIT License


## Training Details

### Data

SEA-LION was trained on 980B tokens of the following data:

| Data Source               | Tokens | Percentage |
|---------------------------|-------:|:----------:|
| RefinedWeb - English      | 571.3B |     58.20% |
| mC4 - Chinese             |  91.2B |      9.29% |
| mC4 - Indonesian          |  14.7B |      1.50% |
| mC4 - Malay               |   2.9B |      0.29% |
| mC4 - Filipino            |   5.3B |      0.54% |
| mC4 - Burmese             |   1.2B |      0.49% |
| mC4 - Vietnamese          |  63.4B |      6.46% |
| mC4 - Thai                |  21.6B |      2.20% |
| mC4 - Lao                 |   1.1B |      0.12% |
| mC4 - Khmer               |   3.9B |      0.40% |
| mC4 - Tamil               |  10.2B |      1.04% |
| the Stack - Python        |  41.8B |      4.26% |
| the Stack - Javascript    |  55.6B |      5.66% |
| the Stack - Shell         |   2.5B |      0.26% |
| the Stack - SQL           |  12.8B |      1.31% |
| the Stack - Markdown      |  26.6B |      2.71% |
| RedPajama - StackExchange |  21.2B |      2.16% |
| RedPajama - ArXiv         |  30.6B |      3.12% |

### Infrastructure

SEA-LION was trained using [MosaicML Composer](https://github.com/mosaicml/composer)
on the following hardware:

| Training Details     | SEA-LION 7B  |
|----------------------|:------------:|
| AWS EC2 p4d.24xlarge | 32 instances |
| Nvidia A100 40GB GPU | 256          |
| Training Duration    | 22 days      |


### Configuration

| HyperParameter    | SEA-LION 7B        |
|-------------------|:------------------:|
| Precision         | bfloat16           |
| Optimizer         | decoupled_adamw    |
| Scheduler         | cosine_with_warmup |
| Learning Rate     | 6.0e-5             |
| Global Batch Size | 2048               |
| Micro Batch Size  | 4                  |


## Technical Specifications

### Model Architecture and Objective

SEA-LION is a decoder model using the MPT architecture.

| Parameter       | SEA-LION 7B |
|-----------------|:-----------:|
| Layers          | 32          |
| d_model         | 4096        |
| head_dim        | 32          |
| Vocabulary      | 256000      |
| Sequence Length | 2048        |


### Tokenizer Details

We sample 20M lines from the training data to train the tokenizer.<br>
The framework for training is [SentencePiece](https://github.com/google/sentencepiece).<br>
The tokenizer type is Byte-Pair Encoding (BPE).



## The Team

Lam Zhiwen Clarence<br>
Leong Weiqi<br>
Li Yier<br>
Liu Darius<br>
Lovenia Holy<br>
Montalan Jann Railey<br>
Ng Raymond<br>
Ngui Jian Gang<br>
Nguyen Ngan Thanh<br>
Ong Tat-Wee David<br>
Rengarajan Hamsawardhini<br>
Susanto Yosephine<br>
Tai Ngee Chia<br>
Tan Choon Meng<br>
Teo Jin Howe<br>
Teo Leslie<br>
Teo Wei Yi<br>
Tjhi William<br>
Yeo Yeow Tong<br>
Yong Xianbin<br>

## Contact

For more info, please contact us at seallm@aisingapore.org