File size: 9,945 Bytes
68a945c 0c5276c 68a945c cc4a2f0 0c5276c cc4a2f0 68a945c 945c270 bf33bc5 68a945c c773b24 68a945c cc4a2f0 68a945c cc4a2f0 68a945c f42f2a5 68a945c cc4a2f0 22a4a44 cc4a2f0 68a945c 0c5276c 68a945c 0c5276c cc4a2f0 0c5276c 68a945c 0c5276c 68a945c 22a4a44 68a945c ab3664c 22a4a44 68a945c 1273e87 68a945c 26a8a26 68a945c cc4a2f0 68a945c cc4a2f0 68a945c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
---
language:
- en
- zh
- vi
- id
- th
- fil
- ta
- ms
- km
- lo
- my
- jv
- su
license: gemma
library_name: transformers
pipeline_tag: text-generation
base_model: google/gemma-2-9b
---
# Gemma2 9B CPT SEA-LIONv3
SEA-LION is a collection of Large Language Models (LLMs) which has been pretrained and instruct-tuned for the Southeast Asia (SEA) region.
This is the card for the Gemma2 9B CPT SEA-LIONv3 base model which has undergone continued pre-training from the base [Gemma-2-9B](https://huggingface.co/google/gemma-2-9b) model.
SEA-LION stands for <i>Southeast Asian Languages In One Network</i>.
## Model Details
### Model Description
The continued pre-training data for Gemma2 9B CPT SEA-LIONv3 base model encompasses approximately 200B tokens.
- **Developed by:** Products Pillar, AI Singapore
- **Funded by:** Singapore NRF
- **Model type:** Decoder
- **Languages:** English, Chinese, Vietnamese, Indonesian, Thai, Filipino, Tamil, Malay, Khmer, Lao, Burmese, Javanese, Sundanese
- **License:** [Gemma Community License](https://ai.google.dev/gemma/terms)
For tokenisation, the model employs the default tokenizer used in Gemma-2-9B. The model has a context length of 8192.
### Benchmark Performance
We evaluated Gemma2 9B CPT SEA-LIONv3 base model on general language capabilities.
#### General Language Capabilities
For the evaluation of general language capabilities, we employed the [SEA HELM (also known as BHASA) evaluation benchmark](https://arxiv.org/abs/2309.06085v2) across a variety of tasks.
These tasks include Question Answering (QA), Sentiment Analysis (Sentiment), Toxicity Detection (Toxicity), Translation in both directions (Eng>Lang & Lang>Eng), Abstractive Summarization (Summ), Causal Reasoning (Causal) and Natural Language Inference (NLI).
Note: SEA HELM is implemented using prompts to elicit answers in a strict format. For all tasks, the model is expected to provide an answer tag from which the answer is automatically extracted. For tasks where options are provided, the answer should comprise one of the pre-defined options. The scores for each task is normalised to account for baseline performance due to random chance.
The evaluation was done **five-shot** with native prompts on a sample of 100-1000 instances for each dataset.
For more details on Gemma2 9B CPT SEA-LIONv3 base benchmark performance, please refer to the SEA HELM leaderboard, https://leaderboard.sea-lion.ai/
## Training Details
### Data
Gemma2 9B CPT SEA-LIONv3 base model was continued pre-trained on 200B tokens of the following data:
| Data Source | Unique Tokens (B) | Multiplier | Total Tokens (B) | Percentage (%)|
|---------------------------------------|:-----------------:|:----------:|:----------------:|:-------------:|
| StackV2 | 40.0 | 1 | 40.0 | 20.00 |
| Wiki* + News* - English | 5.0 | 1 | 5.0 | 2.50 |
| Fineweb-Edu | 7.5 | 1 | 7.5 | 3.75 |
| Dolma Project Gutenberg | 5.0 | 1 | 5.0 | 2.50 |
| Dolma arXiv | 1.7 | 1 | 1.7 | 0.83 |
| Dolma StackExchange | 1.7 | 1 | 1.7 | 0.83 |
| Dolma Semantic Scholar | 1.7 | 1 | 1.7 | 0.83 |
| Dolma OpenWebMath | 2.5 | 1 | 2.5 | 1.25 |
| Dolma Algebraic Stack | 2.5 | 1 | 2.5 | 1.25 |
| Dolma Flan | 5.0 | 1 | 5.0 | 2.50 |
| Dolma Reddit | 5.0 | 1 | 5.0 | 2.50 |
| Dolma Megawika | 5.0 | 1 | 5.0 | 2.50 |
| Dolma CC News | 7.5 | 1 | 7.5 | 3.75 |
| Wiki* + News* - Chinese | 3.5 | 4 | 14.0 | 7.00 |
| SEA-LION Pile - Chinese | 12.0 | 1 | 12.0 | 6.00 |
| Wiki* + News* - Vietnamese | 2.4 | 4 | 9.4 | 4.70 |
| VinBigData - Vietnamese | 2.1 | 4 | 8.2 | 4.10 |
| SEA-LION Pile - Vietnamese | 8.4 | 1 | 8.4 | 4.20 |
| Wiki* + News* - Indonesian | 1.3 | 4 | 5.2 | 2.60 |
| SEA-LION Pile - Indonesian | 20.8 | 1 | 20.8 | 10.40 |
| Wiki* + News* + WangChanBERTa - Thai | 1.3 | 4 | 5.2 | 2.60 |
| SEA-LION Pile - Thai | 14.8 | 1 | 14.8 | 7.40 |
| Wiki* + News - Filipino | 0.2 | 4 | 0.9 | 0.43 |
| SEA-LION Pile - Filipino | 2.1 | 1 | 2.1 | 1.07 |
| Wiki* + News - Tamil | 0.1 | 4 | 0.3 | 0.14 |
| SEA-LION Pile - Tamil | 0.7 | 1 | 0.7 | 0.36 |
| Wiki* + News - Malay | 0.1 | 4 | 0.6 | 0.29 |
| SEA-LION Pile - Malay | 1.4 | 1 | 1.4 | 0.71 |
| Wiki* + News - Khmer | 0.1 | 4 | 0.3 | 0.17 |
| SEA-LION Pile - Khmer | 2.3 | 1 | 2.3 | 1.13 |
| Wiki* + News - Lao | 0.0 | 4 | 0.1 | 0.03 |
| SEA-LION Pile - Lao | 0.3 | 1 | 0.3 | 0.17 |
| Wiki* + News - Burmese | 0.1 | 4 | 0.4 | 0.20 |
| SEA-LION Pile - Burmese | 2.6 | 1 | 2.6 | 1.30 |
Note:
- All token counts are counted using Gemma2 tokenizer
- Wiki* sources includes Wikipedia, Wiki Books, Wiki Source, Wiki Voyage and Fandom Wiki
- News* sources includes VOA, Global Voices, MediaCorp, VinBigData-News
- Tamil news is sourced with permission from [Seithi](https://seithi.mediacorp.sg/)
### Infrastructure
Gemma2 9B CPT SEA-LIONv3 was trained using [MosaicML Composer](https://github.com/mosaicml/composer)
on the following hardware:
| Training Details | Gemma2 9B CPT SEA-LIONv3 |
|----------------------|:------------------------:|
| SingTel HGX-100 | 8+1 instances |
| Nvidia H100 80GB GPU | 64+8 |
| Training Duration | 10 days |
### Configuration
| HyperParameter | Gemma2 9B CPT SEA-LIONv3 |
|-------------------|:------------------------:|
| Precision | bfloat16 |
| Optimizer | decoupled_adamw |
| Scheduler | weight_stable_decay |
| Learning Rate | 1.0e-5 |
| Global Batch Size | 512 |
| Micro Batch Size | 1 |
## Indonesian, Javanese & Sudanese Specific SEA-LION
Our partners at GoTo have continued pretrained and instruction tuned a variant of Gemma2 9B CPT SEA-LIONv3, specifically enhancing its capabilities for Indonesian, Javanese, and Sundanese languages. Find the continued pretrained model at [Gemma2 9B CPT SahabatAIv1 Base](https://huggingface.co/GoToCompany/gemma2-9b-cpt-sahabatai-v1-base), and its corresponding instructioned tuned version at [Gemma2 9B CPT SahabatAIv1 Instruct](https://huggingface.co/GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct).
## The Team
Chan Adwin, Choa Esther, Cheng Nicholas, Huang Yuli, Lau Wayne, Lee Chwan Ren, Leong Wai Yi, Leong Wei Qi, Limkonchotiwat Peerat, Liu Bing Jie Darius, Montalan Jann Railey, Ng Boon Cheong Raymond, Ngui Jian Gang, Nguyen Thanh Ngan, Ong Brandon, Ong Tat-Wee David, Ong Zhi Hao, Rengarajan Hamsawardhini, Siow Bryan, Susanto Yosephine, Tai Ngee Chia, Tan Choon Meng, Teo Eng Sipp Leslie, Teo Wei Yi, Tjhi William, Teng Walter, Yeo Yeow Tong, Yong Xianbin
## Acknowledgements
AI Singapore is a national programme supported by the National Research Foundation, Singapore and hosted by the National University of Singapore.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of National Research Foundation, Singapore.
## Contact
For more info, please contact us using this [SEA-LION Inquiry Form](https://forms.gle/sLCUVb95wmGf43hi6)
[Link to SEA-LION's GitHub repository](https://github.com/aisingapore/sealion)
## Disclaimer
This is the repository for the base model.
The model has _not_ been aligned for safety.
Developers and users should perform their own safety fine-tuning and related security measures.
In no event shall the authors be held liable for any claim, damages, or other liability arising from the use of the released weights and codes.
## References
### Thai Pre-Training Data Reference
```bibtex
@misc{lowphansirikul2021wangchanberta,
title={WangchanBERTa: Pretraining transformer-based Thai Language Models},
author={Lalita Lowphansirikul and Charin Polpanumas and Nawat Jantrakulchai and Sarana Nutanong},
year={2021},
eprint={2101.09635},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |