File size: 4,604 Bytes
750522a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import torch
import torch.nn as nn
import torch.nn.functional as F


# model architecture
class AttentionHead(nn.Module):
  """a single head of self attention"""
  
  def __init__(self, n_embed, head_size, block_size, dropout):
    super().__init__()
    self.key = nn.Linear(n_embed, head_size, bias=False)
    self.query = nn.Linear(n_embed, head_size, bias=False)
    self.value = nn.Linear(n_embed, head_size, bias=False)
    self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
    
    self.dropout = nn.Dropout(dropout)
    
  def forward(self, x):
    B, T, C = x.shape
    K = self.key(x) # (B, T, C)
    Q = self.query(x) # (B, T, C)
    
    wei = Q @ K.transpose(-2,-1) * C**-0.5 # (B, T, C) @ (B, H, C) -> (B, T, T)
    wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
    wei = F.softmax(wei, dim=-1)
    wei = self.dropout(wei)

    V = self.value(x) # (B, T, C)
    out = wei @ V # (B, T, T) @ (B, T, C) -> (B, T, C)
    return out
  
class MultiHeadAttention(nn.Module):
  """a multi-head self attention layer"""
  
  def __init__(self, n_embed, n_heads, head_size, block_size, dropout):
    super().__init__()
    self.heads = nn.ModuleList([AttentionHead(n_embed, head_size, block_size, dropout) for _ in range(n_heads)])
    self.fc = nn.Linear(head_size * n_heads, n_embed)
    self.dropout = nn.Dropout(dropout)
    
  def forward(self, x):
    out = torch.cat([h(x) for h in self.heads], dim=-1) # (B, T, n_heads*C)    
    out = self.fc(out) # (B, T, C)
    out = self.dropout(out) 
    return out
  
class FeedForward(nn.Module):
  def __init__(self, n_embed, n_hidden, dropout):
    super().__init__()
    self.net = nn.Sequential(
      nn.Linear(n_embed, n_hidden),
      nn.ReLU(),
      nn.Linear(n_hidden, n_embed),
      nn.Dropout(dropout)
    )
    
  def forward(self, x):
   return self.net(x)
  
class Block(nn.Module):
  def __init__(self, n_embed, n_heads, block_size, dropout):
    super().__init__()
    self.sa_heads = MultiHeadAttention(n_embed, n_heads, n_embed // n_heads, block_size, dropout)
    self.ffwd = FeedForward(n_embed, n_embed*4, dropout)
    self.ln1 = nn.LayerNorm(n_embed)
    self.ln2 = nn.LayerNorm(n_embed)
    
    
  def forward(self, x):
    x = x + self.sa_heads(self.ln1(x)) #  [batch_size, block_size, n_embed]
    x = x + self.ffwd(self.ln2(x)) # [batch_size, block_size, n_embed]
    return x

class NanoGPT(nn.Module):
  def __init__(self, hyperparameters, device="cpu"):
    super().__init__()
    
    # hyperparameters
    vocab_size = hyperparameters['vocab_size']
    block_size = hyperparameters['block_size']
    n_embed = hyperparameters['n_embed']
    n_heads = hyperparameters['n_heads']
    n_layers = hyperparameters['n_layers']
    dropout = hyperparameters['dropout']
    
    self.token_embedding_table = nn.Embedding(vocab_size, n_embed)
    self.position_embedding_table = nn.Embedding(block_size, n_embed)
    self.blocks = nn.Sequential(*[Block(n_embed, n_heads, block_size, dropout) for _ in range(n_layers)])
    self.ln_f = nn.LayerNorm(n_embed)
    self.lm_head = nn.Linear(n_embed, vocab_size)
    
    self.device = device
    self.block_size = block_size
      
  def forward(self, idx, targets=None):
    # idx and target are both [batch_size, block_size]
    B, T = idx.shape
    
    tok_emb = self.token_embedding_table(idx) # [batch_size, block_size, n_embed]
    pos_emb = self.position_embedding_table(torch.arange(T, device=self.device)) # [block_size, n_embed]
    x = tok_emb + pos_emb # [batch_size, block_size, n_embed]
    x = self.blocks(x)
    x = self.ln_f(x)
    logits = self.lm_head(x) # [batch_size, block_size, vocab_size]
    
    if targets is None:
      loss = None
    else:
      B, T, C = logits.shape
      logits = logits.view(B*T, C)
      targets = targets.view(B*T)
      loss = F.cross_entropy(logits, targets)
    
    return logits, loss
    # return 0, 0
      
  def generate(self, idx, max_new_tokens=100):
    # idx is (B, T)
    for _ in range(max_new_tokens):
      # get the last block_size tokens
      idx_cond = idx[:, -self.block_size:] # (B, T)
      # get the predictions
      logits, _ = self(idx_cond)
      # focus only on the last time step
      logits = logits[:, -1, :] # becomes (B, C)
      # apply softmax to get probabilities
      probs = F.softmax(logits, dim=1) # (B, C)
      # sample from the distribution
      idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
      # append sampled index to the running sequence
      idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
      
    return idx