YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Table of Contents

PlanGeneratorAtomicFlow

PlanGeneratorAtomicFlow Objects

class PlanGeneratorAtomicFlow(ChatAtomicFlow)

This class wraps around the Chat API to generate plan from a goal.

Input Interface Non Initialized:

  • goal

Input Interface Initialized:

  • goal

Output Interface:

  • plan

Configuration Parameters:

  • Also refer to ChatAtomicFlow (https://huggingface.co/aiflows/ChatFlowModule/blob/main/ChatAtomicFlow.py)
  • input_interface_non_initialized: The input interface when the conversation is not initialized.
  • input_interface_initialized: The input interface when the conversation is initialized.
  • output_interface: The output interface.
  • backend: The backend to use for the Chat API.
  • system_message_prompt_template: The template for the system message prompt.
  • human_message_prompt_template: The template for the human message prompt.
  • init_human_message_prompt_template: The initial human message prompt.

__init__

def __init__(**kwargs)

This function instantiates the class.

Arguments:

  • kwargs (Dict[str, Any]): The configuration parameters.

instantiate_from_config

@classmethod
def instantiate_from_config(cls, config)

This function instantiates the class from a configuration.

Arguments:

  • config (Dict[str, Any]): The configuration.

Returns:

ChatAtomicFlow: The instantiated class.

run

def run(input_data: Dict[str, Any]) -> Dict[str, Any]

This function runs the flow.

Arguments:

  • input_data (Dict[str, Any]): The input data.

Returns:

Dict[str, Any]: The output data.

run

__init__

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support