File size: 2,037 Bytes
8b22cbf 2cd86e2 8b22cbf 2cd86e2 e06323f da6ad08 2cd86e2 da6ad08 2cd86e2 da6ad08 e06323f da6ad08 2cd86e2 da6ad08 2cd86e2 dfc02d5 2cd86e2 da6ad08 2cd86e2 5ecce4a da6ad08 2cd86e2 da6ad08 2cd86e2 da6ad08 2cd86e2 68e1689 49cf776 2cd86e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
license: mit
language:
- ru
tags:
- PyTorch
- Transformers
---
# ruELECTRA large model multitask (cased) for Sentence Embeddings in Russian language.
About model family https://arxiv.org/abs/2003.10555
## Usage (HuggingFace Models Repository)
You can use the model directly from the model repository to compute sentence embeddings:
For better quality, use mean token embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
return sum_embeddings / sum_mask
#Sentences we want sentence embeddings for
sentences = ['Привет! Как твои дела?',
'А правда, что 42 твое любимое число?']
#Load AutoModel from huggingface model repository
tokenizer = AutoTokenizer.from_pretrained("ai-forever/ruElectra-large")
model = AutoModel.from_pretrained("ai-forever/ruElectra-large")
#Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=24, return_tensors='pt')
#Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
#Perform pooling. In this case, mean pooling
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
```
# Authors
+ [SaluteDevices](https://sberdevices.ru/) RnD Team.
+ Aleksandr Abramov: [HF profile](https://huggingface.co/Andrilko), [Github](https://github.com/Ab1992ao), [Kaggle Competitions Master](https://www.kaggle.com/andrilko);
+ Mark Baushenko: [HF profile](https://huggingface.co/e0xexrazy);
+ Artem Snegirev: [HF profile](https://huggingface.co/artemsnegirev)
|