File size: 6,488 Bytes
dc660c4 a4e23cc ad3b4ce 4175a27 a4e23cc dc660c4 ad3b4ce a4f5e88 ad3b4ce 91cc8b0 ad3b4ce f085e09 ad3b4ce e5b2e12 ad3b4ce f085e09 ad3b4ce f085e09 ad3b4ce 77b8a97 ad3b4ce a4e23cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
---
language:
- en
license: mit
tags:
- llama2
- llama-2
- llama
- llama2 architecture
- litellama
datasets:
- Redpajama
metrics:
- MMLU
widget:
- text: 'Q: What is the largest bird?\nA:'
model-index:
- name: LiteLlama-460M-1T
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 24.83
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ahxt/LiteLlama-460M-1T
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 38.39
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ahxt/LiteLlama-460M-1T
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 25.96
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ahxt/LiteLlama-460M-1T
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 41.59
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ahxt/LiteLlama-460M-1T
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 50.2
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ahxt/LiteLlama-460M-1T
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0.0
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ahxt/LiteLlama-460M-1T
name: Open LLM Leaderboard
---
# LiteLlama: Reduced-Scale Llama
We present an open-source reproduction of Meta AI's [LLaMa 2](https://ai.meta.com/llama/). However, with significantly reduced model sizes, [LiteLlama-460M-1T](https://huggingface.co/ahxt/LiteLlama-460M-1T) has 460M parameters trained with 1T tokens.
## Dataset and Tokenization
We train our models on part of [RedPajama](https://www.together.xyz/blog/redpajama) dataset. We use the [GPT2Tokenizer](https://huggingface.co/docs/transformers/v4.31.0/en/model_doc/gpt2#transformers.GPT2Tokenizer) to tokenize the text.
## Training Details
The model was trained with ~1T tokens (0.98T). num of tokens = steps*length*batch_size=499679*1024*192=98240888832≈0.98T.
The training curve is at this [WandB project](https://wandb.ai/ahxt/llama2_xs_460M_training_loss/reports/reduced_train_loss-23-09-05-20-25-43---Vmlldzo1MzIwNDUx?accessToken=x2ch3n30jo77p1x8y7q9js4h4d8zpjtz1tzot4xxullyefixp4jwt7au2q37k2q6).
### Using with HuggingFace Transformers
The experimental checkpoints can be directly loaded by [Transformers](https://huggingface.co/transformers/) library. The following code snippet shows how to load the our experimental model and generate text with it.
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_path = 'ahxt/LiteLlama-460M-1T'
model = AutoModelForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
model.eval()
prompt = 'Q: What is the largest bird?\nA:'
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
tokens = model.generate(input_ids, max_length=20)
print( tokenizer.decode(tokens[0].tolist(), skip_special_tokens=True) )
# Q: What is the largest bird?\nA: The largest bird is a black-headed gull.
```
## Evaluation
### We evaluate our models on the MMLU task.
| Models | #parameters |zero-shot | 5-shot |
| --- | --- | --- | --- |
| llama | 7B | 28.46 | 35.05 |
| openllama | 3B | 24.90 | 26.71 |
|TinyLlama-1.1B-step-50K-105b | 1.1B | 19.00 | 26.53 |
| LiteLlama-460M-1T | 0.46B | 21.13 | 26.39 |
### [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ahxt__llama2_xs_460M_experimental)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 26.65 |
| ARC (25-shot) | 24.91 |
| HellaSwag (10-shot) | 38.47 |
| MMLU (5-shot) | 26.17 |
| TruthfulQA (0-shot) | 41.59 |
| Winogrande (5-shot) | 49.88 |
| GSM8K (5-shot) | 0.0 |
| DROP (3-shot) | 5.51 |
## Contact
This model was developed by [Xiaotian Han](https://ahxt.github.io/) from Texas A&M University at the DATA Lab under the supervision of Prof. [Xia "Ben" Hu](https://cs.rice.edu/~xh37/index.html), and the model is released under MIT License.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ahxt__LiteLlama-460M-1T)
| Metric |Value|
|---------------------------------|----:|
|Avg. |30.16|
|AI2 Reasoning Challenge (25-Shot)|24.83|
|HellaSwag (10-Shot) |38.39|
|MMLU (5-Shot) |25.96|
|TruthfulQA (0-shot) |41.59|
|Winogrande (5-shot) |50.20|
|GSM8k (5-shot) | 0.00|
|